Switch-mode NPN Silicon Power Transistors

The BUX85G is designed for high voltage, high speed power switching applications like converters, inverters, switching regulators, motor control systems.

Features

• These Devices are Pb-Free and are RoHS Compliant*

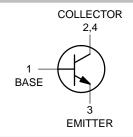
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO(sus)}	450	Vdc
Collector–Emitter Voltage	V _{CES}	1000	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current – Continuous	I _C	2	Adc
Collector Current - Peak (Note 1)	I _{CM}	3.0	Adc
Base Current – Continuous	I _B	0.75	Adc
Base Current – Peak (Note 1)	I _{BM}	1.0	Adc
Reverse Base Current – Peak	I _{BM}	1	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	50 0.4	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

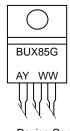
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

THERMAL CHARACTERISTICS


Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	T_L	275	°C



ON Semiconductor®


www.onsemi.com

2.0 AMPERES POWER TRANSISTOR NPN SILICON 450 VOLTS, 50 WATTS

MARKING DIAGRAM

BUX85 = Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BUX85G	TO-220 (Pb-Free)	50 Units / Rail

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

	Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERIST	FICS (Note 2)			1 -34	1 111	1
Collector–Emitter Sus (I _C = 100 mAdc, (L	V _{CEO(sus)}	450	-	-	Vdc	
Collector Cutoff Curre (V _{CES} = Rated Valu (V _{CES} = Rated Valu	I _{CES}	_ _		0.2 1.5	mAdc	
Emitter Cutoff Curren (V _{EB} = 5 Vdc, I _C =	I _{EBO}	-	_	1	mAdc	
ON CHARACTERISTI	ICS (Note 2)					
DC Current Gain (I _C = 0.1 Adc, V _{CE}	h _{FE}	30	50	_	_	
Collector–Emitter Saturation Voltage ($I_C = 0.3$ Adc, $I_B = 30$ mAdc) ($I_C = 1$ Adc, $I_B = 200$ mAdc)		V _{CE(sat)}	_ _	-	0.8 1	Vdc
Base–Emitter Saturat (I _C = 1 Adc, I _B = 0.2	V _{BE(sat)}	-	-	1.1	Vdc	
DYNAMIC CHARACT	ERISTICS			•		•
Current–Gain – Band (I _C = 500 mAdc, V _C	f _T	4	_	_	MHz	
SWITCHING CHARAC	CTERISTICS	•	•	•	•	
Turn-on Time	V _{CC} = 250 Vdc, I _C = 1 A	t _{on}	_	0.3	0.5	μS
Storage Time	$I_{B1} = 0.2 \text{ A}, I_{B2} = 0.4 \text{ A}$	t _s	_	2	3.5	μS
Fall Time	See Figure 2	t _f	_	0.3	_	μS
Fall Time	Same above cond. at T _C = 95°C	t _f	-	-	1.4	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: PW = 300 μs, Duty Cycle ≤2%.

TYPICAL CHARACTERISTICS

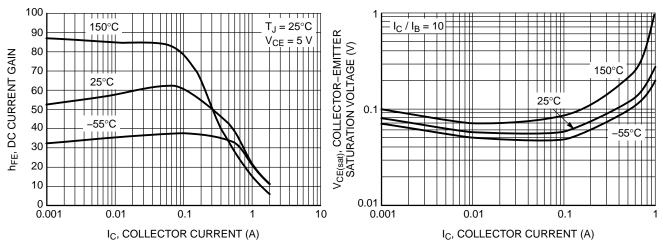


Figure 1. DC Current Gain

Figure 2. V_{CE(sat)}, Collector Emitter Saturation Voltage

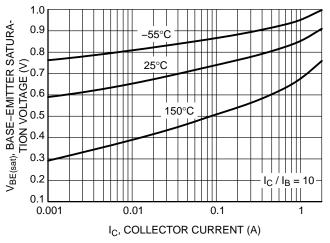


Figure 3. V_{BE(sat)}, Base Emitter Saturation Voltage

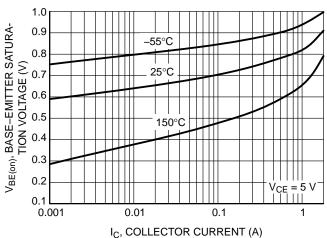


Figure 4. $V_{BE(on)}$, Base Emitter On Voltage

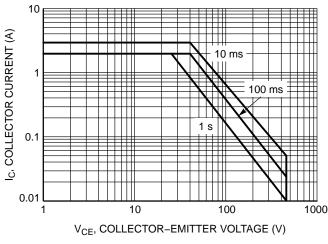


Figure 5. Safe Operating Area (SOA)

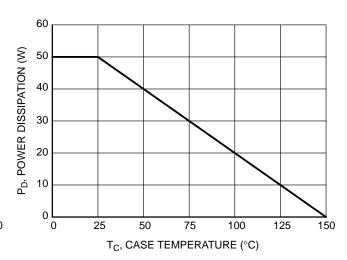
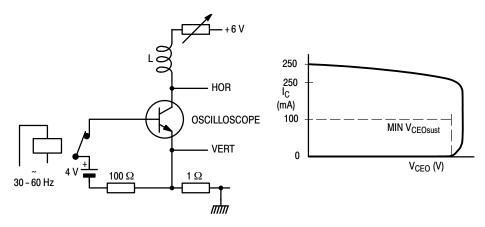
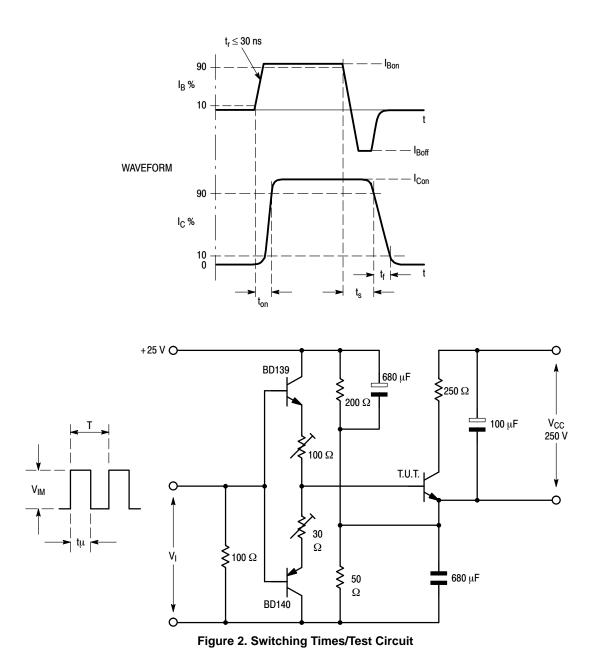
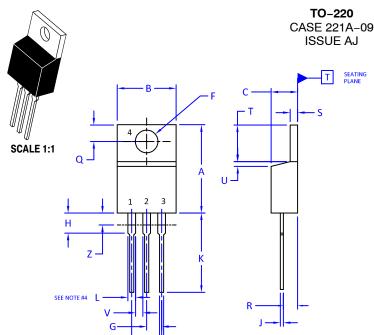


Figure 6. Power Derating


Figure 1. Test Circuit for V_{CEOsust}

www.onsemi.com

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

DATE 05 NOV 2019

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES

NOTES:

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELA
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:		STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative