

Features:

- +24.0 dBm typical Output Power at 12 GHz
- 16.0 dB typical Small Signal Gain at 12 GHz
- 50% typical PAE at 12 GHz
- 0.25 x 250 Micron Refractory Metal/Gold Gate
- Excellent for High Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 390 x 260 microns Chip Thickness: 100 microns

Description:

The MwT-PH7F is a AlGaAs/InGaAs PHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron Gate length and 250 micron gate width make it ideally suited for applications requiring high-gain and medium power up to 28 GHz frequency range. The device is equally effective for either wideband (e.g. 6 to 18 GHz) or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

Electrical Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
Output Power at 1dB Compression Vds=8.0V lds=0.5xIDSS	P1dB	12 GHz	dBm	23.0	24.0
Small Signal Gain Vds=8.0V lds=0.5xIDSS	SSG	12 GHz 18 GHz	dB	14.0 12.0	16.0 13.0
Power Added Efficiency at P1dB Vds=8.0V lds=0.5xIDSS	PAE	12 GHz	%		50

Note: Ids should be between 40% and 60% of Idss. Low Ids will improve efficiency, but High Ids will make Psat and IP3 better.

DC Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 3.0 V Vgs= 0.0 V	IDSS	mA	85		110
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS	75	80	
Pinch-off Voltage Vds= 3.0 V lds= 1.0 mA	Vp	V		-1.2	-2.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA	BVGSO	V	-13.0	-15.0	
Gate-to-Drain Breakdown Voltage Igd= -0.3 mA	BVGDO	V	-16.0	-18.0	
Chip Thermal Resistance	Rth	C/W		150 350*	

^{*} Overall Rth depends on case mounting

Output Power, Gain & PAE at 12GHz Vds=8V; Ids=50% of Idss

Output Power ,Gain & PAE at 18GHz Vds=8V, Ids=50% of Idss

MwT-PH7F DUAL BIAS

50 II Ouput Ouput Reference I Plane Circuit 19 Mils Long Copper Heat Sink 5 Mis Below Level of Microstrip 20 Mile 7 Mis Long Gold Block AllBo 10x10x5 Mis Input Reference Plane (2 each) 1.DMI Circuit Diameter

MwT-PH7F SELF BIAS

SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE Chip and 71 Pkg

SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE

Absolute Maximum Rating

Symbol	Parameter	Units	Cont Max1	Absolute Max2	
VDS	Drain to Source Volt.	V	6.5	7.5	
Tch	Channel Temperature	°C	+150	+175	
Tst	st Storage Temperature		-65 to +150	+175	
Pin	Pin RF Input Power		80	120	

Notes

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.

S-Parameters

S-PARAMETER Vds=7V, Ids= 0.7 x Idss

Freq.	S11		S21		S12		\$22		K	GMAX
GHz	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)		dB
1	-0.356	-13.928	17.306	168.863	-41.532	81.950	-2.148	-5.510	0.277	29.419
2	-0.509	-27.881	17.085	158.527	-35.730	74.135	-2.260	-10.944	0.231	26.407
3	-0.745	-41.184	16.758	148.587	-32.605	68.334	-2.427	-16.161	0.238	24.681
4	-1.032	-53.421	16.270	139.975	-30.494	62.003	-2.641	-20.154	0.282	23.382
5	-1.154	-64.652	15.853	130.663	-29.128	56.437	-2.833	-24.455	0.298	22.491
6	-1.659	-72.734	15.138	124.033	-28.243	51.818	-2.980	-27.186	0.408	21.691
7	-1.856	-84.479	14.737	116.099	-27.383	47.573	-3.199	-31.132	0.415	21.060
8	-2.283	-93.789	14.015	108.842	-27.074	43.530	-3.616	-34.035	0.541	20.545
9	-2.341	-100.574	13.703	104.083	-26.438	41.955	-3.409	-37.464	0.481	20.070
10	-2.783	-109.827	12.991	96.864	-26.494	37.725	-3.851	-39.790	0.650	19.743
11	-2.825	-117.852	12.494	91.391	-26.153	35.829	-3.956	-43.184	0.649	19.324
12	-3.041	-126.103	12.006	85.383	-26.065	32.466	-4.102	-45.899	0.726	19.036
13	-3.052	-132.810	11.529	80.106	-26.065	31.275	-4.226	-49.049	0.760	18.797
14	-3.289	-139.919	11.001	74.929	-26.060	30.756	-4.329	-50.395	0.855	18.531
15	-3.339	-145.594	10.575	70.249	-26.248	28.383	-4.344	-52.497	0.927	18.412
16	-3.389	-151.118	10.093	65.000	-26.350	29.183	-4.491	-57.462	0.993	18.222
17	-3.455	-156.610	9.643	60.832	-26.571	28.967	-4.517	-60.502	1.077	16.418
18	-3.394	-162.199	9.281	55.891	-26.480	30.844	-4.408	-63.522	1.046	16.564
19	-3.371	-165.983	8.853	52.111	-26.663	31.863	-4.381	-66.287	1.101	15.822
20	-3.391	-169.492	8.458	48.258	-26.699	34.280	-4.417	-69.261	1.156	15.180
21	-3.211	-173.349	8.136	44.589	-26.144	35.389	-4.285	-71.781	1.020	16.278
22	-3.135	-176.568	7.760	40.208	-26.474	37.878	-4.215	-75.570	1.063	15.586
23	-3.087	179.464	7.487	36.271	-26.376	43.025	-4.189	-78.764	1.039	15.717
24	-3.074	176.519	7.139	33.149	-26.405	41.505	-3.976	-82.791	1.032	15.668
25	-3.060	173.628	6.786	29.105	-26.123	45.532	-3.973	-85.593	1.025	15.479
26	-2.925	170.455	6.374	25.031	-25.182	49.216	-3.868	-89.133	0.863	15.778
27	-2.837	167.977	6.035	21.413	-25.192	51.952	-3.729	-92.533	0.840	15.613
28	-2.701	165.985	5.866	17.891	-24.587	54.924	-3.545	-96.152	0.687	15.227
29	-2.611	163.524	5.608	14.571	-24.172	55.331	-3.347	-99.179	0.587	14.890
30	-2.539	161.620	5.389	11.233	-23.528	56.465	-3.083	-102.965	0.453	14.458

ORDERING INFORMATION:

When placing order or inquiring, please specify wafer number, if known. For details of Safe Handling Procedure please see supplementary information in available PDF on our website www.mwtinc.com. For package information, please see supplementary application note in PDF format by clicking located on our website.

ChipMwT-PH7FPackage 70MwT-PH770FPackage 73MwT-PH773F