

TH855-5

Silicone Thermal Putty

Description

TH855-5 is a dispensable silicone based thermally conductive putty. It has high extrusion rate, low bleed and non-flowable. It is designed for very good thermal conduction with high electrical insulation.

Features

- High thermal conductivity
- High compressible
- Dispensable
- Non electrical conductive
- Low outgassing

Applications

Dispensable thermally conductive silicone based putty for use as thermal interface material for electronic component.

Properties	Typical Value	Unit	Test Method	
Color	Light grey	-	PEN 10	
Viscosity, 25°C	566,480	cР	PEN 144	
Thixotropic index	4.0	-	PEN 144	
Flow test, 45° incline	No flow	mm	PEN 15	
Specific gravity	3.25	g/cm ³	PEN 14	
Extrusion rate				
1) At 50psi	0.51	g/min	PEN 107	
2) At 60psi	0.73	g/min	PEN 107	
3) At 70psi	0.89	g/min	PEN 107	
Flow test, 45° incline	No flow	mm	PEN 15	
Thermal conductivity	5.0	W/mK	ASTM D5470-17	
Thermal contact resistance	3.0	K.cm ² /W	ASTM D5470-17	
Volume resistivity	>1.0 x 10 ¹⁴	Ohm-cm	ASTM D257	
Volatile content @ 150°C	0.06	%	PEN 92	
Operating temperature	-40 to 200	°C	PEN 92	
Bleed test, blot width	9.0	mm	PEN 99	

^{*}The values above are tested based on batch to batch basis. These values are not used as a basis for preparing specifications.

Compression Deflection

Revision 1: 16-Feb-2022

Penchem Technologies Sdn Bhd (767120-A),

Address: 1015, Jalan Perindustrian Bukit Minyak 7, Kawasan Perindustrian Bukit Minyak, Mk.13,

14100 Penang, Malaysia. Tel: +604-501 5976, 77, 78

Fax: +604-501 5979 Website: www.penchem.com

^{*} PEN is referring to Penchem's standard test method; ASTM is for test reference only.

^{*} Viscosity and thixotropic index were measured by Rheometer, MCR72, PP25/S, 0.5mm gap, 10(1/s), 25.0°C

^{*} Thermal conductivity and contact resistance were measured by TIM1300, ASTM D5470-17, 1.0mm thick, 100kPa contact pressure.

^{*} Extrusion rate was measured by using needle size:GA15, 10ml EFD syringe, 25.0°C

^{*} Oil bleeding was measured after 100hours at 100°C, 1.0±0.05g on filter paper.

TH855-5

Silicone Thermal Putty

Compression rate (%)	20	30	40	50
Initial pressure (psi)	0.00	0.44	0.51	0.68
Pressure after sustained for 30s (psi)	0.00	0.00	0.34	0.52

Thermal Conductivity after Heat Aging (95°C) and Damp Heat Test (85°C, 85% RH) for 1000hrs

Tackiness after Heat Aging at 95°C

Test Method : 180 ° Peel Test; 0.200 +/- 0.005g; Substrate : Kapton film (0.6cm width) to glass

Guideline of Use

- 1) Wear rubber glove when handling the silicone putty.
- 2) Scoop a quantity of the silicone putty from the container using a stainless steel spatula.
- 3) Work and knead the putty around electronic part and circuit by hand.
- 4) This product may be dispensed by pneumatic dispenser or other dispensing equipment with an appropriate needle. Increasing the dispensing temperature (eg. 60°C) can ease the dispensing process. The user is responsible to determine

Revision 1: 16-Feb-2022

Penchem Technologies Sdn Bhd (767120-A),

Address: 1015, Jalan Perindustrian Bukit Minyak 7, Kawasan Perindustrian Bukit Minyak, Mk.13,

14100 Penang, Malaysia. Tel: +604-501 5976, 77, 78

Fax: +604-501 5979 Website: www.penchem.com

TH855-5

Silicone Thermal Putty

the suitability of the product for all intended uses.

5) Wipe off any excess putty with a piece of dry cloth. Further cleaning of residues may be achieved by wiping with cloth wetted with isopropanol.

Features

This product has 18 months of shelf life from date of manufacturing, unless otherwise specified, when stored at room temperature in the original and unopened container.

Applications

- 10ml syringe
- 30ml syringe
- 500g plastic jar

Other packaging enquiry, please contact our sales department.

Environment, Health & Safety

This product is intended for industrial use only. For more safety information, please refer to Product Safety Data Sheet (SDS).

General Information

 All right reserved. This information in this document is subjected to change without notice.

Revision 1: 16-Feb-2022

Penchem Technologies Sdn Bhd (767120-A),

Address: 1015, Jalan Perindustrian Bukit Minyak 7, Kawasan Perindustrian Bukit Minyak, Mk.13, 14100 Penang, Malaysia.

Tel: +604-501 5976, 77, 78 Fax: +604-501 5979

Tel: +604-501 5976, 77, 78 Fax: +604-501 5979 Website: <u>www.penchem.com</u>

