

Project Number: Design Qualification Test Report	Tracking Code: 502396_Report_Rev_1
Requested by: Abbie Yang	Date: 5/11/2015
Part #: MEC2-30-01-L-TH1-WT/EDGE CARD	·
Part description: MEC2/CARD	Tech: Kason He
Test Start: 2/9/2015	Test Completed: 3/28/2015

(Actual part not depicted)

DESIGN QUALIFICATION TEST REPORT

MEC2/CARD MEC2-30-01-L-TH1-WT/EDGE CARD

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description: MEC2/CARD	

REVISION HISTORY

DATE	REV.NUM.	DESCRIPTION	ENG
5/11/2015	1	Initial Issue	КН

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description: MEC2/CARD	

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Samtec Test PCBs used: PCB-106652-TST/PCB-106653-TST/PCB-106654-TST/PCB-106655-TST PCB-106656-TST/PCB-106657-TST

Tracking Code: 502396 Report Rev 1

Part description: MEC2/CARD

FLOWCHARTS

Gas Tight

Group 1 MEC2-30-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .056" thick edge card (min)

Step Description

- 1. LLCR (2)
- Gas Tight (1)
- LLCR₍₂₎

Max Delta = 15 mOhm

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

Normal Force

Group 1 MEC2-30-01-L-TH1-WT MATING-CARD 8 Contacts Minimum

Signal Without Thermals

Note: .068" thick edge card (max)

Step Description

- Contact Gaps
- Normal Force (1)
 Deflection = .025 "
 Expected Force at Max Deflection = 80 g

Group 2
MEC2-30-01-L-TH1-WT
MATING-CARD
8 Contacts Minimum
Signal With Thermals

Note: .068" thick edge card (max)

Step Description

- Contact Gaps
- 2. Thermal Age (2)
- Contact Gaps
- Normal Force (1)
 Deflection = .025 "

 Expected Force at Max Deflection = 80 g

(1) Normal Force = EIA-364-04

(2) Thermal Age = EIA-364-17

Test Condition = 4 (105°C) Time Condition = B (250 Hours) Tracking Code: 502396_Report_Rev_1

Part description: MEC2/CARD

FLOWCHARTS Continued

Thermal Aging

Group 1 MEC2-30-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .056" thick edge card (min)

Step Description

- 1. Contact Gaps
- 2. Mating/Unmating Force (2)
- 3. LLCR (1)
- Thermal Age (3)
- LLCR₍₁₎
- Max Delta = 15 mOhm
 6. Mating/Unmating Force (2)
- 7. Contact Gaps

Group 2

MEC2-30-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .068" thick edge card (max)

Step Description

- 1. Contact Gaps
- 2. Mating/Unmating Force(2)
- 3. LLCR (1)
- 4. Thermal Age (3)
- 5. LLCR (1)
 - Max Delta = 15 mOhm
- 6. Mating/Unmating Force(2)
- 7. Contact Gaps

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

- (2) Mating/Unmating Force = EIA-364-13
- (3) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)
Time Condition = B (250 Hours)

FLOWCHARTS Continued

Mating/Unmating/Durability

Group 1 MEC2-30-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .056" thick edge card (min)

Description

- 1. Contact Gaps
- LLCR (2) 2.
- 3. Mating/Unmating Force (3)
- Cycles 4. Quantity = 25 Oycles
- 5. Mating/Unmating Force (3)
- 6. Cycles Quantity = 25 Cycles
- 7 Mating/Unmating Force (3)
- 8. Cycles
- Quantity = 25 Cycles
- 9 Mating/Unmating Force (3)
- Cycles
- Quantity = 25 Oycles
- Mating/Unmating Force (3)
- 12. Contact Gaps
- LLCR (2) 13. Max Delta = 15 mOhm
- 14 Thermal Shock (4)
- 15. LLCR (2)
- Max Delta = 15 mOhm
- Humidity (1) 16
- 17. LLCR (2) Max Delta = 15 mOhm
- 18. Mating/Unmating Force (3)

Group 2 MEC2-30-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .068" thick edge card (max)

Description

- 1. Contact Gaps
- LLCR (2) 2
- 3. Mating/Unmating Force (3)
- Cycles 4
- Quantity = 25 Cycles
- 5 Mating/Unmating Force(3)
- 6. Cycles Quantity = 25 Oycles
- 7 Mating/Unmating Force (3)
- Cycles
- Quantity = 25 Oycles
- Mating/Unmating Force(3)
- 10. Cycles
- Quantity = 25 Oycles
- Mating/Unmating Force(3)
- 12. Contact Gaps
- LLCR (2) 13.
- Max Delta = 15 mOhm 14 Thermal Shock (4)
- LLCR (2) Max Delta = 15 mOhm 15.
- 16
- Humidity (1)
- 17. LLCR (2) Max Delta = 15 mOhm
- Mating/Unmating Force (3)

Group 3 MEC2-05-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .068" thick edge card (max)

Step Description

- 1. Contact Gaps
- 2. Mating/Unmating Force (3)
- 3. Cycles
- Quantity = 25 Cycles 4. Mating/Unmating Force (3)
- 5. Cycles Quantity = 25 Ovdes
- 6. Mating/Unmating Force (3)
- Cycles 7.
- Quantity = 25 Oycles
- 8 Mating/Unmating Force (3)
- 9. Cycles Quantity = 25 Cycles
- 10 Mating/Unmating Force (3)

Group 4 MEC2-50-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .068" thick edge card (max)

Step Description

- 1. Contact Gaps
- Mating/Unmating Force (3) 2
- 3. Cycles
- Quantity = 25 Oycles
- 4. Mating/Unmating Force (3)
- 5. Cycles
- Quantity = 25 Oydes
- 6. Mating/Unmating Force (3)
- Cycles 7.
- Quantity = 25 Oycles
- 8. Mating/Unmating Force (3)
- 9. Cycles
- Quantity = 25 Cycles
- 10. Mating/Unmating Force (3)

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25oC to +65tC @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

- (3) Mating/Unmating Force = EIA-364-13
- (4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55oC to +85tC)

Test Duration = A-3 (100 Cycles)

Tracking Code: 502396 Report Rev 1 Part #: MEC2-30-01-L-TH1-WT/EDGE CARD

Part description: MEC2/CARD

FLOWCHARTS Continued

IR/DWV

Pin-to-Pin

Group 1 MEC2-30-01-L-TH1-WT MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. DWV Breakdown (2)

Group 2 MEC2-30-01-L-TH1-WT

2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. DWV Breakdown (3)

Group 3

MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. DWV Breakdown (3)

Group 4 MEC2-30-01-L-TH1-WT MATING-CARD

2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. IR (5)

2. DWV at Test Voltage (1)

3. Thermal Shock (6)

4. IR (5)

5. DWV at Test Voltage (1)

6. Humidity (4)

7. IR₍₅₎

8. DWV at Test Voltage (1)

Group 8

MEC2-30-01-L-TH1-WT

MATING-CARD

2 Assemblies

Note: .056" thick edge card (min)

Row-to-Row

Group 5 MEC2-30-01-L-TH1-WT MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. DWV Breakdown (3)

Group 6 MEC2-30-01-L-TH1-WT

2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. DWV Breakdown (3)

Group 7

MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description

1. DWV Breakdown (3)

Step Description

1. IR₍₅₎

2. DWV at Test Voltage (1)

Thermal Shock (6)

4. IR (5)

5. DWV at Test Voltage (1)

6. Humidity (4)

7. IR₍₅₎

8. DWV at Test Voltage (1)

FLOWCHARTS Continued

Pin-to-Closest Metallic Hardware

Group 9 MEC2-30-01-L-TH1-WT MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description DWV Breakdown (3)

Group 10 MEC2-30-01-L-TH1-WT

2 Assemblies

Note: .056" thick edge card (min)

Step Description DWV Breakdown (3) Group 11

MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description DWV Breakdown (3)

Group 12 MEC2-30-01-L-TH1-WT MATING-CARD 2 Assemblies

Note: .056" thick edge card (min)

Step Description

- DWV at Test Voltage (1) 2.
- Thermal Shock (6) 3.
- 4.
- 5. DWV at Test Voltage (1)
- Humidity (4) 6.
- 7. IR (5)
- DWV at Test Voltage (1) 8

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(4) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)
Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(5) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(6) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C) Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

Current Carrying Capacity

Group 1 MEC2-50-01-L-TH1-WT MATING-CARD 2 Pins Powered

Signal

Step Description CCC (1) Rows = 2

Number of Positions = 1

Group 2 MEC2-50-01-L-TH1-WT MATING-CARD 4 Pins Powered Signal

Step Description CCC₍₁₎ Rows = 2

Number of Positions = 2

Group 3 MEC2-50-01-L-TH1-WT MATING-CARD 6 Pins Powered Signal

Step Description CCC₍₁₎ Rows = 2

Number of Positions = 3

MEC2-50-01-L-TH1-WT MATING-CARD 8 Pins Powered Signal

Group 4

Note: 50 POS.056" thick edge card (min) Note: 50 POS.056" thick edge card (min) Note: 50 POS.056" thick edge card (min) Note: 50 POS.056" thick edge card (min)

Number of Positions = 4

Step Description CCC₍₁₎ Rows = 2

MEC2-50-01-L-TH1-WT MATING-CARD 100 Pins Powered Signal

Note: 50 POS.056" thick edge card (min)

Step Description

CCC (1)

Number of Positions = 50

(1) CCC = EIA-364-70

Method 2, Temperature Rise Versus Current Curve
(TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C
(GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/LLCR

Group 1
MEC2-30-01-L-TH1-WT
MATING-CARD
8 Assemblies

Note: .056" thick edge card (min)

Step Description

1. LLCR (1)

Mechanical Shock (2)

3. Random Vibration (3)

LLCR₍₁₎

Max Delta = 15 mOhm

Group 2

MEC2-30-01-L-TH1-WT MATING-CARD 8 Assemblies

Note: .068" thick edge card (max)

Step Description

1. LLCR (1)

2. Mechanical Shock (2)

Random Vibration (3)

LLCR₍₁₎

Max Delta = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Mechanical Shock/Random Vibration/Event Detection

Group 1 MEC2-30-01-L-TH1-WT MATING-CARD 60 Points

Note: .056" thick edge card (min)

Step Description

- Nanosecond Event Detection (Mechanical Shock)₍₁₎
- Nanosecond Event Detection (Random Vibration) (2)

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.
- 2) Test Condition 4 at 105° C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to +65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, Mechanical Shock Test Procedure for Electrical Connectors
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, Vibration Test Procedure for Electrical Connectors
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, Nanosecond-Event Detection for Electrical Connectors
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

MATING/UNMATING:

- 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description: MEC2/CARD	

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - a. Ambient
 - b 85° C
 - c. 95° C
 - d. 115° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description: MEC2/CARD	

The following is a brief, simplified description of attributes.

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50° C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description: MFC2/CARD	

The following is a brief, simplified description of attributes

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Reference document: EIA-364-04, Normal Force Test Procedure for Electrical Connectors.
- 2) The contacts shall be tested in the connector housing.
- 3) If necessary, a "window" shall be made in the connector body to allow a probe to engage and deflect the contact at the same attitude and distance (plus 0.05 mm [0.002"]) as would occur in actual use.
- 4) The connector housing shall be placed in a holding fixture that does not interfere with or otherwise influence the contact force or deflection.
- 5) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC², computer controlled test stand with a deflection measurement system accuracy of 5.0 μm (0.0002").
- 6) The nominal deflection rate shall be 5 mm (0.2")/minute.
- 7) Unless otherwise noted a minimum of five contacts shall be tested.
- 8) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 9) The system shall utilize the TC² software in order to acquire and record the test data.
- 10) The permanent set of each contact shall be measured within the TC² software.
- 11) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description: MEC2/CARD	

The following is a brief, simplified description of attributes

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD	
Part description: MFC2/CARD		

· · · · · · · · · · · · · · · · · · ·	RESULTS
Temperature Rise, CCC at a 20% de-rating	
	4.9 A per contact with 2 contacts (2 x 1) powered
	4.2 A per contact with 4 contacts (2 x 2) powered
	3.7 A per contact with 6 contacts (2 x 3) powered
	3.2 A per contact with 8 contacts (2 x 4) powered
	1.9 A per contact with 98 contacts (2 x 49) powered
	1.5 A per contact with 50 contacts (2 x 15) powered
Mating/Unmating Forces	
Thermal Aging Group	
MEC2-30-01-L-TH1-WT/EDGE CARD 0.056"	
• Initial	
o Mating	0.22 1.1
• Min	
Max	10.68 LDS
 Unmating Min 	2.66 I ba
• Max	
After Thermal	4.55 Lbs
o Mating	
• Min	8.80 Lbs
■ Max	
o Unmating	
• Min	3.92 Lbs
• Max	4.09 Lbs
MEC2-30-01-L-TH1-WT /EDGE CARD 0.068"	
• Initial	
o Mating	
■ Min	11.78 Lbs
■ Max	
o Unmating	
• Min	3.25 Lbs
■ Max	5.26 Lbs
After Thermal	
 Mating 	
■ Min	
■ Max	11.70 Lbs

Unmating

Min ---

Max-----

----- 3.04 Lbs

----- 3.93 Lbs

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD	
Part description: MEC2/CARD		

Mating/Unmating Forces

Mating-Unmating Durability Group (MEC2-30-01-L-TH1-WT/EDGE CARD 0.056")

- Initial
 - **Mating**
 - Min ----- 7.26 Lbs
 - Max-----9.54 Lbs
 - Unmating
 - Min ----- 3.24 Lbs
 - Max----- 4.16 Lbs
- **After 25 Cycles**
 - Mating
 - Min ----- 9.74 Lbs
 - Max-----12.11 Lbs
 - Unmating
 - Min ----- 4.27 Lbs Max----- 5.14 Lbs
- After 50 Cycles
- Mating

 - Max-----14.43 Lbs
 - Unmating
 - Min ------ 4.87 Lbs
 - Max----- 5.97 Lbs
- **After 75 Cycles**
 - Mating
 - Min -----11.85 Lbs
 - Max-----15.50 Lbs
 - Unmating

 - Max----- 6.68 Lbs
- **After 100 Cycles**
 - Mating

 - Max-----16.34 Lbs
 - Unmating

 - Max----- 7.38 Lbs
- Humidity
 - Mating 0
 - Min ----- 6.09 Lbs
 - Max----- 8.39 Lbs
 - Unmating
 - Min ----- 3.00 Lbs
 - Max----- 4.08 Lbs

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD	
Part description: MEC2/CARD		

Mating/Unmating Forces

Mating-Unmating Durability Group (MEC2-30-01-L-TH1-WT/EDGE CARD 0.068")

- Initial
 - Mating
 - Min -----11.01 Lbs
 - Max-----13.76 Lbs
 - o Unmating
 - Min ----- 3.31 Lbs
 - Max----- 4.29 Lbs
- After 25 Cycles
 - Mating
 - Min -----12.59 Lbs
 - Max-----15.61 Lbs
 - Unmating
 - Min ------ 4.23 Lbs
 - Max----- 5.58 Lbs
- After 50 Cycles
 - Mating
 - Min ------13.37 Lbs
 - Max-----18.00 Lbs
 - Unmating
 - Min ------ 4.70 Lbs
 - Max----- 6.82 Lbs
- After 75 Cycles
 - Mating
 - Min -----13.84 Lbs
 - Max-----18.92 Lbs
 - Unmating
 - Min ----- 6.02 Lb
 - Max----- 8.44 Lbs
- After 100 Cycles
 - Mating
 - Min ----- 14.25 Lbs
 - Max-----19.46 Lbs
 - Unmating
 - Min ----- 6.41 Lb
 - Max----- 9.06 Lbs
- Humidity
 - Mating
 - Min ----- 8.17 Lbs
 - Max-----10.76 Lbs
 - o Unmating
 - Min ----- 2.87 Lbs
 - Max----- 3.52 Lbs

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD			
Part description: MEC2/CARD				

Mating/Unmating Forces

Mating-Unmating Basic Group (MEC2-05-01-L-TH1-WT/EDGE CARD 0.068")

- Initial
 - Mating
 - Min ----- 1.32 Lbs
 - Max------ 1.73 Lbs
 - o Unmating
 - Min ----- 0.41 Lbs
 - Max----- 0.55 Lbs
- After 25 Cycles
 - Mating
 - Min ----- 1.47 Lbs
 - Max-----1.75 Lbs
 - o Unmating
 - Min ----- 0.55 Lbs
- Max------0.74 Lbs
- After 50 Cycles
 - Mating
 - Min ----- 1.32 Lbs
 - Max------1.93 Lbs
 - Unmating
 - Min ----- 0.62 Lbs
 - Max----- 0.82 Lbs
- After 75 Cycles
 - o Mating
 - Min ----- 1.37 Lbs
 - Max------2.02 Lbs
 - o Unmating
 - Min ----- 0.69 Lb
 - Max----- 0.95 Lbs
- After 100 Cycles
 - o Mating
 - Min ----- 1.42 Lbs
 - Max-----2.09 Lbs
 - o Unmating
 - Min ----- 0.74 Lbs
 - Max----- 1.07 Lbs

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD			
Part description: MEC2/CARD				

RESULTS Continued Mating/Unmating Forces Mating-Unmating Basic Group (MEC2-50-01-L-TH1-WT/EDGE CARD 0.068") Initial **Mating** Min -----15.37 Lbs Max-----17.19 Lbs Unmating Min ------ 4.63 Lbs Max----- 5.60 Lbs **After 25 Cycles** Mating Min -----15.56 Lbs Max-----19.47 Lbs Unmating Min ----- 5.74 Lbs Max----- 7.63 Lbs After 50 Cycles Mating Max-----20.94 Lbs Unmating Min ----- 7.07 Lbs Max------8.68 Lbs **After 75 Cycles** Mating Min ------16.63 Lbs Max-----21.71 Lbs Unmating Max----- 9.39 Lbs **After 100 Cycles** Mating Min ----- 16.96 Lbs Max-----22.29 Lbs Unmating

Normal Force at 0.0226 inches deflection

Initial

	0	Min	162.40 gf	Set 0.0006 in
	0	Max -	166.10 gf	Set 0.0013 in
• ′	Thermal	[
	0	Min	104.60 gf	Set 0.0057 in
	•	May .	118 00 af	Set 0 0074 in

Max----- 10.02 Lbs

RESULTS Continued Insulation Resistance minimums, IR Pin to Pin • Initial Thermal Shock Humidity Unmated ------ 8412 Meg Ω ------ Passed Row to Row Initial Mated ------ Passed Unmated ------ 10000 Meg Ω ------ Passed Unmated ------ Passed Thermal Shock o Mated---Ω Humidity Unmated ------ Passed \circ Pin to Closest Metallic Hardware Initial o Mated ------ Passed o Unmated ------ Passed Thermal Shock Mated ------ Passed Unmated ----- Passed Humidity Dielectric Withstanding Voltage minimums, DWV **Minimums** Breakdown Voltage ------ 1125 VAC Pin to Pin Initial DWV ------Passed Thermal DWV------Passed Humidity DWV------Passed Row to Row Initial DWV ------Passed Thermal DWV------Passed Humidity DWV------Passed Pin to Closest Metallic Hardware Initial DWV ------Passed

Thermal DWV------Passed Humidity DWV------Passed

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD			
Part description: MEC2/CARD				

RESULTS Continued LLCR Thermal Aging Group (192 LLCR test points) MEC2-30-01-L-TH1-WT/EDGE CARD 0.056" Initial ------3.35 mOhms Max **Thermal** <= +5.0 mOhms ------ Stable +5.1 to +10.0 mOhms ----- Minor +10.1 to +15.0 mOhms ------ Acceptable +15.1 to +50.0 mOhms ------ Marginal +50.1 to +2000 mOhms------ Unstable >+2000 mOhms------ Open Failure MEC2-30-01-L-TH1-WT/EDGE CARD 0.068" Initial ------3.01 mOhms Max Thermal o <= +5.0 mOhms ----- Stable +15.1 to +50.0 mOhms ------ Marginal +50.1 to +2000 mOhms------- Unstable >+2000 mOhms------ Open Failure LLCR Gas Tight Group (192 LLCR test points) MEC2-30-01-L-TH1-WT/EDGE CARD 0.056" ------3.94 mOhms Max Initial ---Gas-Tight <= +5.0 mOhms ----- Stable +5.1 to +10.0 mOhms ----- Minor +10.1 to +15.0 mOhms ------ Acceptable +15.1 to +50.0 mOhms ------ Marginal +50.1 to +2000 mOhms------ Unstable >+2000 mOhms------ Open Failure

Tracking Code: 502396_Report_Rev_1

Humidity

Part description: MEC2/CARD

RESULTS Continued

LLCR N		192 LLCR test points)	
	0-01-L-TH1-WT/EDGE CARD 0.056"	,	
• Initi	al	3,74 mOhms Max	
	ability, 100 Cycles		
	○ <= +5.0 mOhms	192 Points	Stable
	o +5.1 to +10.0 mOhms		
	o +10.1 to +15.0 mOhms		
	o +15.1 to +50.0 mOhms		
	o +50.1 to +2000 mOhms		
	o >+2000 mOhms		
• The	rmal Shock		•
	○ <= +5.0 mOhms	192 Points	Stable
	o +5.1 to +10.0 mOhms		
	o +10.1 to +15.0 mOhms	0 Points	Acceptable
	o +15.1 to +50.0 mOhms		
	o +50.1 to +2000 mOhms		
	o >+2000 mOhms	0 Points	Open Failure
• Hun	nidity		•
	○ <= +5.0 mOhms	192 Points	Stable
	o +5.1 to +10.0 mOhms		
	o +10.1 to +15.0 mOhms		
	o +15.1 to +50.0 mOhms		
	o +50.1 to +2000 mOhms		
	o >+2000 mOhms	0 Points	Open Failure
MEC2-3	0-01-L-TH1-WT/EDGE CARD 0.068"		•
	al	3 51 mOhms Max	
	ability, 100 Cycles	o.or moning wax	
	○ <= +5.0 mOhms	192 Points	Stable
	• +5.1 to +10.0 mOhms		
	• +10.1 to +15.0 mOhms		
	o +15.1 to +50.0 mOhms		
	• +50.1 to +2000 mOhms		
	o >+2000 mOhms		
	rmal Shock	o i omes	open runure
	○ <= +5.0 mOhms	192 Points	Stable
	• +5.1 to +10.0 mOhms		
	• +10.1 to +15.0 mOhms		
	o +15.1 to +50.0 mOhms		
	• +50.1 to +2000 mOhms		
	• >+2000 mOhms		
	· 2000 monins	v i vints	Open Fanule

○ <= +5.0 mOhms ------ Stable

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD			
Part description: MEC2/CARD				

0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +2000 mOhms	0 Points	Unstable
0	>+2000 mOhms	0 Points	Open Failure

Mechanical Shock & Random Vibration:

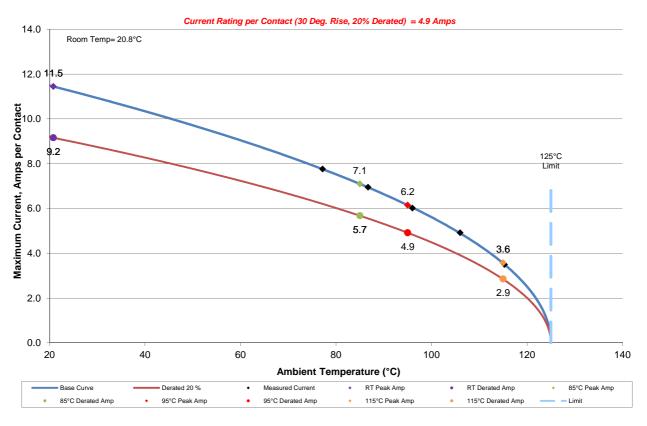
0	Snock	
	•	No DamagePass
	•	50 NanosecondsPass
0	Vibrati	7
	•	No DamagePass
	•	50 NanosecondsPass

MEC2-30-01-L-TH1-WT/EDGE CARD 0.068"

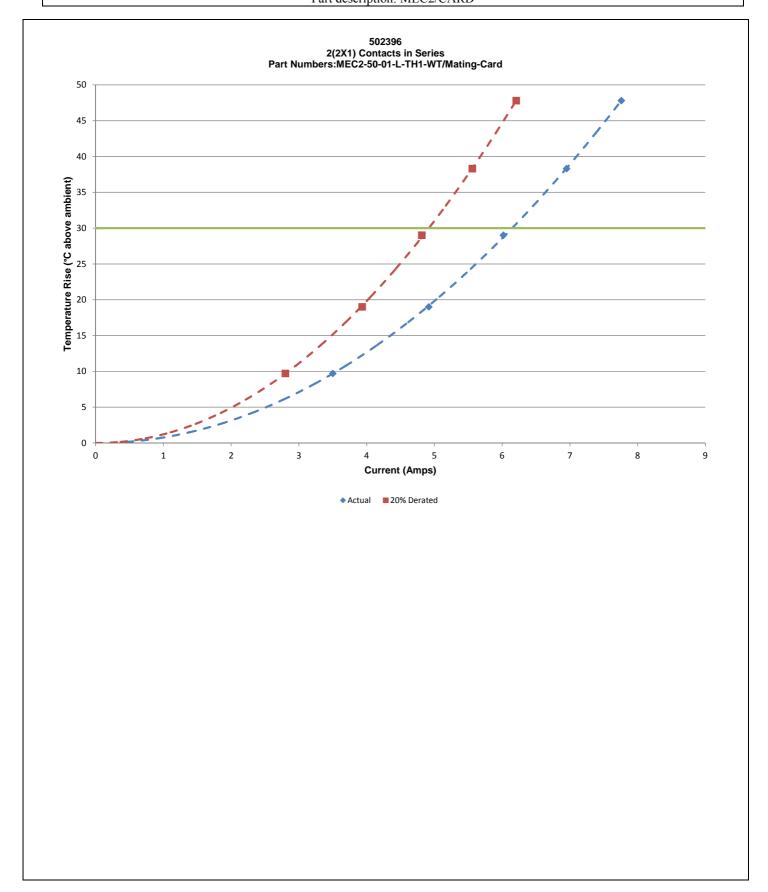
•	Initial	.3.	.51	mOhms Max
---	---------	-----	-----	-----------

• Shock &Vibration

0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +2000 mOhms	0 Points	Unstable
0	>+2000 mOhms	0 Points	Open Failure


Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD			
Part description: MEC2/CARD				

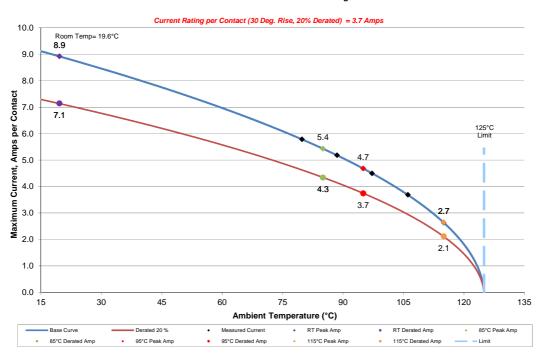
DATA SUMMARIES


TEMPERATURE RISE (Current Carrying Capacity, CCC):

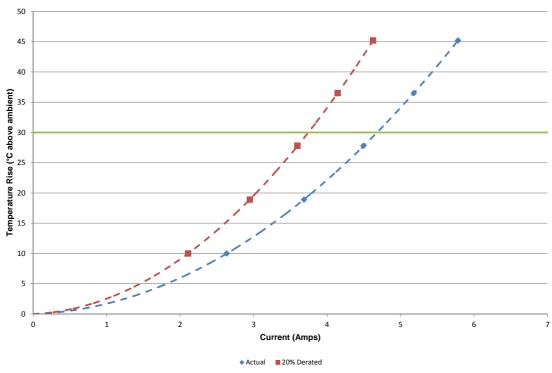
- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 2 adjacent conductors/contacts powered

502396 2(2X1) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD		
Part description: MEC2/CARD			

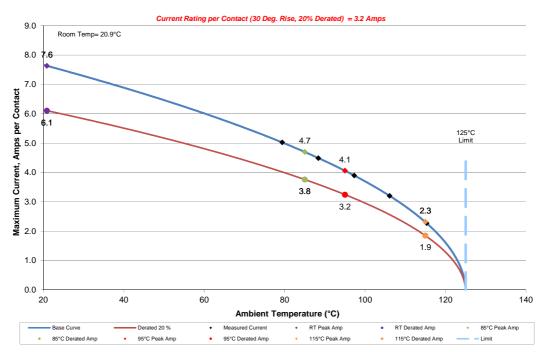

Part description: MEC2/CARD **DATA SUMMARIES Continued** b. Linear configuration with 4 adjacent conductors/contacts powered 502396 4(2X2) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card Current Rating per Contact (30 Deg. Rise, 20% Derated) = 4.2 Amps 12.0 Room Temp= 20.7°C 10.0 Maximum Current, Amps per Contact 0 0 0 0 125°C Limit 5.2 4.9 4.2 3.0 2.0 0.0 40 60 20 80 100 140 120 Ambient Temperature (°C) RT Peak Amp RT Derated Amp 85°C Peak Amp 85°C Derated Amp 95°C Peak Amp 95°C Derated Amp 115°C Peak Amp 115°C Derated Amp 502396 4(2X2) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card 50 45 40 Temperature Rise (*C above ambient) 25 20 15 10 5 0 0 3 5 6 Current (Amps)

Page 27 of 48

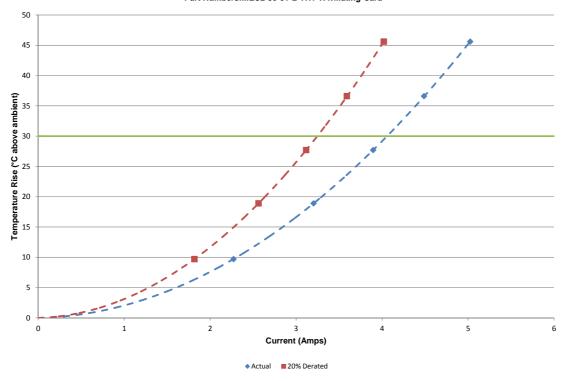

♦ Actual ■ 20% Derated

DATA SUMMARIES Continued c. Linear configuration with 6 adjacent conductors/contacts powered

502396 6(2X3) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card

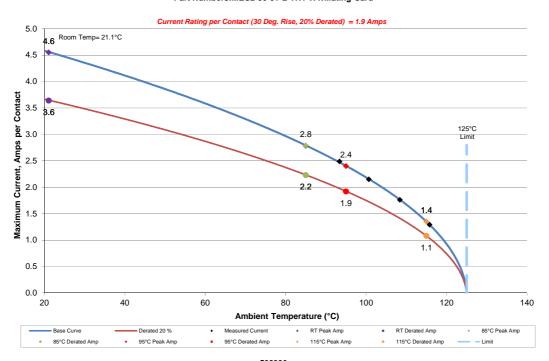


502396 6(2X3) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card

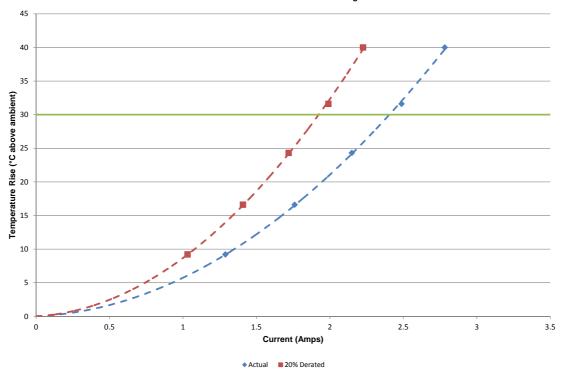


d. Linear configuration with 8 adjacent conductors/contacts powered

502396 8(2X4) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card



502396 8(2X4) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card



Part description: MEC2/CARD DATA SUMMARIES Continued e. Linear configuration with all adjacent conductors/contacts powered

502396 98(2X49) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card

502396 98(2X49) Contacts in Series Part Numbers:MEC2-50-01-L-TH1-WT/Mating-Card

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD				
Part description: MEC2/CARD					

MATING-UNMATING FORCE:

Thermal Aging Group

MEC2-30-01-L-TH1-WT/EDGE CARD 0.056"

		Ini	tial		After Thermals			
	М	ating	Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	41.46	9.32	16.28	3.66	39.14	8.80	17.44	3.92
Maximum	47.50	10.68	19.26	4.33	44.52	10.01	18.19	4.09
Average	44.05	9.90	17.89	4.02	42.21	9.49	17.81	4.00
St Dev	2.20	0.50	1.13	0.25	2.36	0.53	0.33	0.07
Count	8	8	8	8	8	8	8	8

MEC2-30-01-L-TH1-WT/EDGE CARD 0.068"

		Ini	tial		After Thermals			
	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	52.40	11.78	14.46	3.25	45.15	10.15	13.52	3.04
Maximum	63.21	14.21	23.40	5.26	52.04	11.70	17.48	3.93
Average	58.27	13.10	18.94	4.26	48.00	10.79	15.03	3.38
St Dev	3.25	0.73	3.08	0.69	2.24	0.50	1.32	0.30
Count	8	8	8	8	8	8	8	8

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD				
Part description: MEC2/CARD					

MATING-UNMATING FORCE:

		urability Group)-01-L-TH1-W	T/EDGE CA	ARD 0.056")			
		Ini	tial		After 25 Cycles				
	М	ating	Uni	mating	М	ating U		nmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	32.29	7.26	14.41	3.24	43.32	9.74	18.99	4.27	
Maximum	42.43	9.54	18.50	4.16	53.87	12.11	22.86	5.14	
Average	38.27	8.60	16.56	3.72	48.26	10.85	21.12	4.75	
St Dev	3.52	0.79	1.58	0.35	4.62	1.04	1.32	0.30	
Count	8	8	8	8	8	8	8	8	
		After 50) Cycles			After 75	Cycles		
	Mating		Uni	mating	Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	47.59	10.70	21.66	4.87	52.71	11.85	23.17	5.21	
Maximum	64.18	14.43	26.55	5.97	68.94	15.50	29.71	6.68	
Average	56.33	12.67	24.25	5.45	61.58	13.85	26.47	5.95	
St Dev	6.79	1.53	1.68	0.38	6.44	1.45	2.12	0.48	
Count	8	8	8	8	8	8	8	8	
		After 10	0 Cycles		After Humidity				
	М	ating	Uni	mating	M	ating	Uni	mating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	54.22	12.19	24.55	5.52	27.09	6.09	13.34	3.00	
Maximum	72.68	16.34	32.83	7.38	37.32	8.39	18.15	4.08	
Average	65.10	14.64	28.65	6.44	32.48	7.30	16.17	3.64	
St Dev	6.73	1.51	2.90	0.65	3.47	0.78	1.80	0.40	
Count	8	8	8	8	8	8	8	8	

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD				
Part description: MEC2/CARD					

MATING-UNMATING FORCE:

		urability Group)-01-L-TH1-W	T/EDGE CA	ARD 0.068")		
		Ini	tial		After 25 Cycles			
	М	ating	Uni	mating	М	ating	Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	48.97	11.01	14.72	3.31	56.00	12.59	18.82	4.23
Maximum	61.20	13.76	19.08	4.29	69.43	15.61	24.82	5.58
Average	53.06	11.93	16.61	3.73	63.62	14.30	21.94	4.93
St Dev	3.91	0.88	1.38	0.31	4.52	1.02	1.89	0.42
Count	8	8	8	8	8	8	8	8
		After 50	Cycles			After 75	Cycles	
	Mating		Uni	mating	Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	59.47	13.37	20.91	4.70	61.56	13.84	26.78	6.02
Maximum	80.06	18.00	30.34	6.82	84.16	18.92	37.54	8.44
Average	71.33	16.04	26.49	5.96	75.17	16.90	30.79	6.92
St Dev	7.54	1.70	3.35	0.75	8.13	1.83	3.92	0.88
Count	8	8	8	8	8	8	8	8
		After 10	0 Cycles		After Humidity			
	М	ating	Uni	mating	М	ating	Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	63.38	14.25	28.51	6.41	36.34	8.17	12.77	2.87
Maximum	86.56	19.46	40.30	9.06	47.86	10.76	15.66	3.52
Average	77.77	17.49	33.42	7.51	41.14	9.25	14.28	3.21
St Dev	8.38	1.88	3.98	0.89	4.19	0.94	0.97	0.22
Count	8	8	8	8	8	8	8	8

DATA SUMMARIES Continued

MATING-UNMATING FORCE: Mating-Unmating Basic (MEC2-05-0

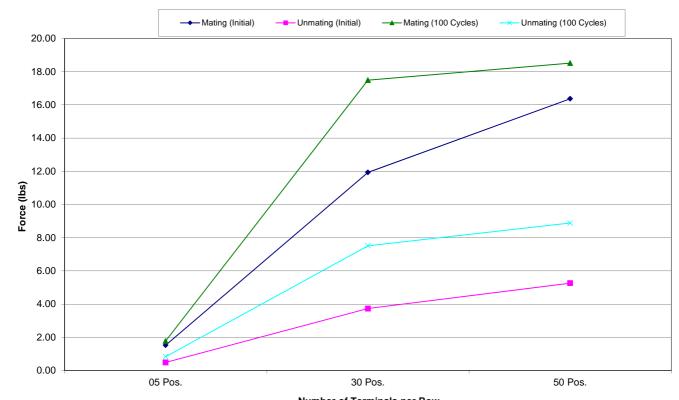
Mating-Unmating Basic (MEC2-05-01-L-TH1-WT/EDGE CARD 0.068")									
		Ini	tial		After 25 Cycles				
	М	ating	Uni	mating	М	ating	Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	5.87	1.32	1.82	0.41	6.54	1.47	2.45	0.55	
Maximum	7.70	1.73	2.45	0.55	7.78	1.75	3.29	0.74	
Average	6.74	1.52	2.15	0.48	7.29	1.64	2.79	0.63	
St Dev	0.71	0.16	0.18	0.04	0.50	0.11	0.24	0.06	
Count	8	8	8	8	8	8	8	8	
		After 50) Cycles			After 75	Cycles		
	Mating		Unmating		М	ating	Uni	mating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	

		After 50) Cycles		After 75 Cycles				
	М	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	5.87	1.32	2.76	0.62	6.09	1.37	3.07	0.69	
Maximum	8.58	1.93	3.65	0.82	8.98	2.02	4.23	0.95	
Average	7.21	1.62	3.11	0.70	7.57	1.70	3.44	0.77	
St Dev	1.04	0.23	0.28	0.06	1.08	0.24	0.38	0.08	
Count	8	8	8	8	8	8	8	8	

	After 100 Cycles							
	М	ating	Unmating					
	Newtons	Force (Lbs)	Newtons	Force (Lbs)				
Minimum	6.32	1.42	3.29	0.74				
Maximum	9.30	2.09	4.76	1.07				
Average	7.86	1.77	3.69	0.83				
St Dev	1.09	0.24	0.48	0.11				
Count	8	8	8	8				

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part descriptio	n: MEC2/CARD

MATING-UNMATING FORCE: Mating-Unmating Basic (MFC2-50-0


Newtons 68.37	Force (Lbs)	Uni Newtons	mating	M	ating	Unr	mating	
	` '	Newtons	_ "		Mating		Unmating	
68.37	45.07		Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
	15.37	20.59	4.63	69.21	15.56	25.53	5.74	
76.46	17.19	24.91	5.60	86.60	19.47	33.94	7.63	
72.80	16.37	23.39	5.26	74.73	16.80	30.54	6.87	
2.93	0.66	1.44	0.32	5.62	1.26	2.64	0.59	
8	8	8	8	8	8	8	8	
After 50 Cycles			After 75 Cycles					
Mating		Unmating		Mating		Unmating		
Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
72.68	16.34	31.45	7.07	73.97	16.63	32.78	7.37	
93.14	20.94	38.61	8.68	96.57	21.71	41.77	9.39	
77.91	17.52	34.80	7.82	80.38	18.07	37.37	8.40	
6.77	1.52	2.51	0.56	7.62	1.71	2.97	0.67	
8	8	8	8	8	8	8	8	
	2.93 8 Manual Manual Mewtons 72.68 93.14 77.91 6.77	2.93 0.66 8 8 After 50 Mating Newtons Force (Lbs) 72.68 16.34 93.14 20.94 77.91 17.52 6.77 1.52 8 8	2.93 0.66 1.44 8 8 8 After 50 Cycles Mating Unit Newtons Force (Lbs) Newtons 72.68 16.34 31.45 93.14 20.94 38.61 77.91 17.52 34.80 6.77 1.52 2.51	2.93 0.66 1.44 0.32 8 8 8 After 50 Cycles Mating Unmating Newtons Force (Lbs) Newtons Force (Lbs) 72.68 16.34 31.45 7.07 93.14 20.94 38.61 8.68 77.91 17.52 34.80 7.82 6.77 1.52 2.51 0.56 8 8 8 8	2.93 0.66 1.44 0.32 5.62 8 8 8 8 After 50 Cycles Mating Unmating M Newtons Force (Lbs) Newtons 72.68 16.34 31.45 7.07 73.97 93.14 20.94 38.61 8.68 96.57 77.91 17.52 34.80 7.82 80.38 6.77 1.52 2.51 0.56 7.62 8 8 8 8 8	2.93 0.66 1.44 0.32 5.62 1.26 8 8 8 8 8 After 50 Cycles Mating Mating Newtons Force (Lbs) Newtons Force (Lbs) 72.68 16.34 31.45 7.07 73.97 16.63 93.14 20.94 38.61 8.68 96.57 21.71 77.91 17.52 34.80 7.82 80.38 18.07 6.77 1.52 2.51 0.56 7.62 1.71 8 8 8 8 8	72.80 16.37 23.39 5.26 74.73 16.80 30.54 2.93 0.66 1.44 0.32 5.62 1.26 2.64 8 8 8 8 8 8 8 After 50 Cycles Mating Mating Unr Newtons Force (Lbs) Newtons Force (Lbs) Newtons 72.68 16.34 31.45 7.07 73.97 16.63 32.78 93.14 20.94 38.61 8.68 96.57 21.71 41.77 77.91 17.52 34.80 7.82 80.38 18.07 37.37 6.77 1.52 2.51 0.56 7.62 1.71 2.97 8 8 8 8 8 8 8	

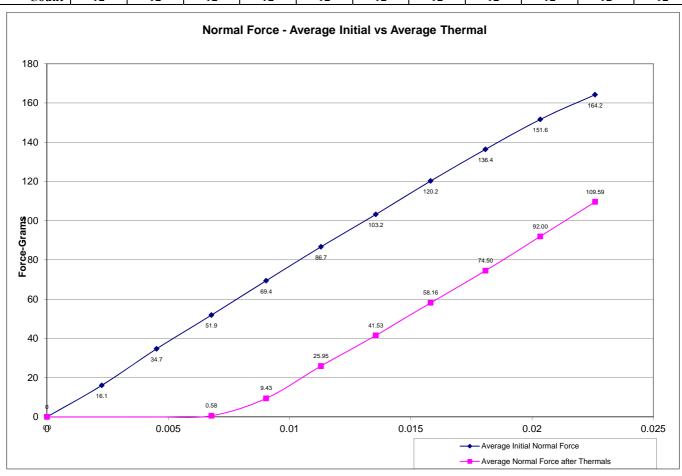
	After 100 Cycles					
	М	ating	Unmating			
	Newtons	Force (Lbs)	Newtons	Force (Lbs)		
Minimum	75.44	16.96	34.92	7.85		
Maximum	99.15	22.29	44.57	10.02		
Average	82.38	18.52	39.49	8.88		
St Dev	8.33	1.87	3.04	0.68		
Count	8	8	8	8		

Tracking Code: 502396_Report_Rev_1		Part #: MEC2-30-01-L-TH1-WT/EDGE CARD		
Part description: MEC2/CARD				

Mating\Unmating Force Comparison

Mating/Unmating Data for 05, 30 and 50 Position MEC2/Card 0.068"

Number of Terminals per Row


Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD				
Part description: MEC2/CARD					

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

		Deflections in inches Forces in Grams									
Initial	0.0023	0.0045	0.0068	0.0090	0.0113	0.0136	0.0158	0.0181	0.0203	0.0226	SET
Averages	16.07	34.69	51.88	69.43	86.71	103.23	120.24	136.36	151.63	164.23	0.0010
Min	11.80	30.80	48.00	65.10	82.30	99.00	115.30	131.70	149.10	162.40	0.0006
Max	17.30	36.00	53.20	71.40	89.40	106.50	122.60	139.50	154.60	166.10	0.0013
St. Dev	1.510	1.429	1.498	1.847	2.083	1.943	1.936	2.212	1.542	1.383	0.0002
Count	12	12	12	12	12	12	12	12	12	12	12

After	After Deflections in inches Forces in Grams										
Thermals	0.0023	0.0045	0.0068	0.0090	0.0113	0.0136	0.0158	0.0181	0.0203	0.0226	SET
Averages	-0.01	-0.03	0.58	9.43	25.95	41.53	58.16	74.50	92.00	109.59	0.0069
Min	-0.10	-0.10	-0.10	6.40	22.50	37.60	53.20	69.30	86.40	104.60	0.0057
Max	0.10	0.10	4.30	17.40	33.80	49.40	65.90	82.90	100.20	118.00	0.0074
St. Dev	0.079	0.065	1.377	3.304	3.228	3.295	3.651	3.994	4.080	3.947	0.0005
Count	12	12	12	12	12	12	12	12	12	12	12

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD				
Part description: MEC2/CARD					

INSULATION RESISTANCE (IR):

	Pin to Pin				
	Mated	Unmated	Unmated		
Minimum	MEC2/Card	MEC2	Card		
Initial	10000	10000	Not Tested		
Thermal	10000	10000	Not Tested		
Humidity	8412	8474	Not Tested		

	Row to Row				
	Mated Unmated Unm				
Minimum	MEC2/Card	MEC2	Card		
Initial	10000	10000	Not Tested		
Thermal	10000	10000	Not Tested		
Humidity	10000	10000	Not Tested		

	Pin to Closest Metallic Hardware				
	Mated	Unmated	Unmated		
Minimum	MEC2/Card	MEC2	Card		
Initial	10000	10000	Not Tested		
Thermal	10000	10000	Not Tested		
Humidity	10000	10000	Not Tested		

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD				
Part description: MEC2/CARD					

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary				
Minimum	MEC2/Card			
Break Down Voltage	1125			
Test Voltage	845			
Working Voltage	280			

Pin to Pin		
Initial Test Voltage	Passed	
After Thermal Test Voltage	Passed	
After Humidity Test Voltage	Passed	

Row to Row				
Initial Test Voltage	Passed			
After Thermal Test Voltage	Passed			
After Humidity Test Voltage	Passed			

Pin to Closest Metallic Hardware				
Initial Test Voltage Passed				
After Thermal Test Voltage	Passed			
After Humidity Test Voltage	Passed			

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	n: MFC2/CARD

LLCR Thermal Aging Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: ------Minor
 - c. +10.1 to +15.0 mOhms:-----Acceptable
 - d. +15.1 to +50.0 mOhms:------Marginal
 - e. +50.1 to +2000 mOhms-------Unstable
 - f. >+2000 mOhms: ------Open Failure

MEC2-30-01-L-TH1-WT/EDGE CARD 0.056"

	LLCR Measu	rement Summaries	s by Pin Ty	<i>r</i> pe
Date	2/9/2015	3/11/2015		
Room Temp (Deg C)	21	19		
Rel Humidity (%)	35	58		
Technician	Kason He	Kason He		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Thermal		
Card 0.056"	P	in Type 1: Signa	ıl	
Average	2.64	1.85		
St. Dev.	0.16	1.10		
Min	2.33	0.01		
Max				
IVIAX	3.35	4.97		
Summary Count	3.35 192	4.97 192		

LLCR Delta Count by Category							
Stable Minor Acceptable Marginal Unstable Ope							
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000	
Thermal	192	0	0	0	0	0	

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	on: MEC2/CARD

MEC2-30-01-L-TH1-WT/EDGE CARD 0.068"

	LLCR Measurement Summaries by Pin Type				
Date	2/9/2015	3/11/2015			
Room Temp (Deg C)	21	19			
Rel Humidity (%)	35	58			
Technician	Kason He	Kason He			
mOhm values	Actual	Delta	Delta	Delta	
	Initial	Thermal			
Card 0.068"		Pin Type 1: Sign	al		
Average	2.52	0.79			
St. Dev.	0.16	0.86			
Min	2.12	0.01			
Max	3.01	4.62			
Summary Count	192	192			
Total Count	192	192			

LLCR Delta Count by Category							
Stable Minor Acceptable Marginal Unstable Ope						Open	
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000	
Thermal	192	0	0	0	0	0	

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	n: MEC2/CARD

LLCR Mating/Unmating Durability Group

- 1). A total of 192 points were measured.
- 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms:-----Stable
 - b. +5.1 to +10.0 mOhms: ------Minor
 - c. +10.1 to +15.0 mOhms: ------Acceptable
 - d. +15.1 to +50.0 mOhms: -------Marginal
 - e. +50.1 to +2000 mOhms------Unstable
 - f. > +2000 mOhms:------Open Failure

MEC2-30-01-L-TH1-WT/EDGE CARD 0.056"

	LLCR Measurement Summaries by Pin Type				
Date	2/9/2015	2/11/2015	3/6/2015	3/18/2015	
Room Temp (Deg C)	21	22	20	22	
Rel Humidity (%)	35	42	54	62	
Technician	Kason He	Kason He	Kason He	Kason He	
mOhm values	Actual	Delta	Delta	Delta	
	Initial	100 Cycles	Therm Shck	Humidity	
Card 0.056"		Pin Type	1: Signal		
Average	2.83	0.28	0.39	0.79	
St. Dev.	0.29	0.23	0.31	0.76	
Min	2.34	0.01	0.00	0.00	
Max	3.74	1.19	1.40	3.22	
Summary Count	192	192	192	192	
Total Count	192	192	192	192	

LLCR Delta Count by Category							
Stable Minor Acceptable Marginal Unstable Ope							
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000	
100 Cycles	192	0	0	0	0	0	
Therm Shck	192	0	0	0	0	0	
Humidity	192	0	0	0	0	0	

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	on: MEC2/CARD

MEC2-30-01-L-TH1-WT/EDGE CARD 0.068"

	LLCR Measurement Summaries by Pin Type				
Date	2/9/2015	2/11/2015	3/6/2015	3/18/2015	
Room Temp (Deg C)	21	22	20	22	
Rel Humidity (%)	35	42	54	62	
	Kason				
Technician	He	Kason He	Kason He	Kason He	
mOhm values	Actual	Delta	Delta	Delta	
	Initial	100 Cycles	Therm Shck	Humidity	
Card 0.068"		Pin Typ	e 1: Signal		
Average	2.70	0.22	0.32	1.53	
St. Dev.	0.28	0.21	0.27	1.02	
Min	2.16	0.00	0.00	0.00	
Max	3.51	1.06	1.45	3.97	
Summary Count	192	192	192	192	
Total Count	192	192	192	192	

LLCR Delta Count by Category							
	Stable	Minor	Acceptable	Marginal	Unstable	Open	
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000	
100 Cycles	192	0	0	0	0	0	
Therm Shck	192	0	0	0	0	0	
Humidity	192	0	0	0	0	0	

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	on: MEC2/CARD

LLCR Gas Tight Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms:-----Stable
 - b. +5.1 to +10.0 mOhms: ------Minor
 - c. +10.1 to +15.0 mOhms:------Acceptable
 - d. +15.1 to +50.0 mOhms:------Marginal
 - e. +50.1 to +2000 mOhms:------Unstable
 - f. >+2000 mOhms:-----Open Failure

MEC2-30-01-L-TH1-WT/EDGE CARD 0.056"

	LLCR Measurement Summaries by Pin Type			
Date	3/3/2015	3/3/2015		
Room Temp (Deg C)	22	22		
Rel Humidity (%)	53	53		
Technician	Kason He	Kason He		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Acid Vapor		
		Pin Type 1: Signa	ıl	
Average	2.96	0.41		
St. Dev.	0.34	0.32		
Min	2.32	0.01		
Max	3.94	1.96		
Summary Count	192	192		
Total Count	192	192		

LLCR Delta Count by Category						
Stable Minor Acceptable Marginal Unstable Ope					Open	
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Acid Vapor 192 0 0 0 0						0

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	on: MEC2/CARD

LLCR Shock & Vibration Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: ------Minor
 - c. +10.1 to +15.0 mOhms:------Acceptable
 - d. +15.1 to +50.0 mOhms: -------Marginal
 - e. +50.1 to +2000 mOhms-------Unstable
 - f. >+2000 mOhms: -----Open Failure

MEC2-30-01-L-TH1-WT/EDGE CARD 0.056"

	LLCR Measur	ement Summaries by	Pin Type	9
Date	4/10/2015	4/16/2015		
Room Temp (Deg C)	22	22		
Rel Humidity (%)	40	44		
Technician	Tony Wagoner	Tony Wagoner		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Shock-Vib		
	P	in Type 1: Signal		
Average	2.93	0.31		
St. Dev.	0.37	0.32		
Min	2.26	0.00		
Max	4.86	2.31		
Summary Count	192	192		
Total Count	192	192		

LLCR Delta Count by Category						
Stable Minor Acceptable Marginal Unstable Op					Open	
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Shock-Vib	192	0	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary			
Contacts tested	60		
Test Condition C, 100g's, 6ms, Half-Si			
Shock Events	0		
Test Condition	V-B, 7.56 rms g		
Vibration Events	0		
Total Events	0		

Tracking Code: 502396_Report_Rev_1	Part #: MEC2-30-01-L-TH1-WT/EDGE CARD
Part description	on: MEC2/CARD

MEC2-30-01-L-TH1-WT/EDGE CARD 0.068"

	LLCR Measurement Summaries by Pin Type			
Date	4/15/2015	4/17/2015	,,,,	
Room Temp (Deg C)	22	21		
Rel Humidity (%)	34	44		
, ,				
Technician	Tony Wagoner	Tony Wagoner		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Shock-Vib		
	P	in Type 1: Signal		
Average	2.60	0.13		
St. Dev.	0.27	0.14		
Min	2.06	0.00		
Max	3.51	1.20		
Summary Count	192	192		
Total Count	192	192		

LLCR Delta Count by Category						
Stable Minor Acceptable Marginal Unstable Op					Open	
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Shock-Vib	192	0	0	0	0	0

Tracking Code: 502396_Report_Rev_1

Part description: MEC2/CARD

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-TCT-01

Description: Normal force analyzer **Manufacturer:** Mecmesin Multitester **Model:** Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 4/25/2014, Next Cal: 4/24/2015

Equipment #: HZ-OV-01 Description: Oven Manufacturer: Huida Model: CS101-1E Serial #: CS101-1E-B

Accuracy: Last Cal: 12/11/2014, Next Cal: 12/10/2015

Equipment #: HZ-THC-01 **Description:** Humidity transmitter **Manufacturer:** Thermtron

Model: SM-8-8200 Serial #: 38846

Accuracy: Last Cal: 2/26/2015, Next Cal: 2/25/2016

Equipment #: HZ-HPM-01 Description: NA9636H Manufacturer: Ainuo

Model: 6031A **Serial #:** 089601091

Accuracy: Last Cal: 3/5/2015, Next Cal: 3/4/2016

Equipment #: HZ-MO-05 Description: Micro-ohmmeter Manufacturer: Keithley

Model: 3706 **Serial #:** 1285188

Accuracy: Last Cal: 11/13/2014, Next Cal: 11/12/2015

Equipment #: HZ-TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnatti Sub Zero

Model: VTS-3-6-6-SC/AC Serial #: 10-VT14994 Accuracy: See Manual

... Last Cal: 06/26/2014, Next Cal: 06/25/2015

Equipment #: HZ-PS-01

Description: 120 Amp Power Supply

Manufacturer: Agilent Model: 6031A PS Serial #: MY41000982 Accuracy: See Manual

... Last Cal: 07/02/2014, Next Cal: 07/01/2015

Tracking Code: 502396_Report_Rev_1

Part description: MEC2/CARD

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: HZ-MO-01

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700 Serial #: 1199807 Accuracy: See Manual

... Last Cal: 07/02/2014, Next Cal: 07/01/2015

Equipment #: MO-11

Description: Switch/Multimeter **Manufacturer:** Keithley

Model: 3706 Serial #: 120169 Accuracy: See Manual

... Last Cal: 08/21/2014, Next Cal: 08/21/2015

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics **Model:** LE-DSA-10-20K

Serial #: 10037 Accuracy: See Manual

... Last Cal: 11/31/2014, Next Cal: 11/31/2015

Equipment #: ACLM-01
Description: Accelerometer
Manufacturer: PCB Piezotronics

Model: 352C03 Serial #: 115819 Accuracy: See Manual

... Last Cal: 07/09/2014, Next Cal: 07/09/2015

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD Serial #: 1100604 Accuracy: See Manual

... Last Cal: 06/04/2014, Next Cal: 06/04/2015