

Product Change Notification

Product Group: OPT/Fri May 24, 2024/PCN-OPT-1178-2021-REV-0

TSTA7100, TSTA7300, TSTA7500 - Change in chip

For further information, please contact your regional Vishay office.

CONTACT INFORMATION

Americas	Europe	Asia
VISHAY Intertechnologies, Inc.	VISHAY Semiconductor GmbH	VISHAY Intertechnology Asia Pte. Ltd.
2585 Junction Avenue	Theresienstrasse 2	25 Tampines Street 92
	-	Keppel Building # 02-00
San Jose California United States 95134- 1923	Heilbronn Germany 74072	Singapore Singapore 528877
Phone: +1-408-567-8358	Phone: +49-7131-67-2113	Phone: +65-6788-6668
Fax: +1 408-240-5687	Fax: +49-7131-67-3144	Fax: +65-6788-3383
-	-	-

Description of Change: Introduce the new state-of-the art Chip technology (MOCVD) to ensure

long term availability of product series.

The new chip generation will have Higher radiant intensity, Higher radiant power, Change in spectral response and a slightly higher forward voltage.

For detailed overview, please refer to the changes summary in the attachment.

Reason for Change: Introduce the new state-of-the art Chip technology (MOCVD)

Expected Influence on Quality/Reliability/Performance: No influence on quality and reliability expected. Nevertheless, we request the customer to test the parts in customers application.

Part Numbers/Series/Families Affected: TSTA7100, TSTA7300, TSTA7500,

Vishay Brand(S): Vishay Semiconductors

Time Schedule:

Start Shipment Date: Mon Sep 2, 2024

Sample Availability: 05/30/2024

Product Identification: Date code

Qualification Data: Available upon request

This PCN is considered approved, without further notification, unless we receive specific customer concerns before Tue Aug 27, 2024 or as specified by contract.

Issued By: Mohankumar Kannusamy, mohankumar.kannusamy@vishay.com

TSTA7100, TSTA7300, TSTA7500

Change overview

PCN - TSTA7100, TSTA7300, TS

Key changes:

- Higher radiant intensity
- Higher radiant power
- Change in spectral response
- Slightly higher forward voltage

Page 1 of the datasheet - Introduction

PRE PCN

After PCN - wit

TSTA7100

Vishay Semiconductors

VISHAY.

Infrared Emitting Diode, RoHS Compliant, 875 nm, GaAlAs

DESCRIPTION

TSTA7100 is an infrared, 875 nm emitting diode in GaAlAs technology in a hermetically sealed TO-18 package with lens.

FEATURES

- Package type: leaded
- Package form: TO-18
- Dimensions (in mm): Ø 4.7
- Peak wavelength: λ_D = 875 nm
- High reliability
- · High radiant power
- · High radiant intensity
- Angle of half intensity: $\phi = \pm 5^{\circ}$
- Low forward voltage
- Suitable for high pulse current operation
- Good spectral matching with Si photodetectors
- Lead (Pb)-free component in accordance with RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

· Radiation source near infrared range

Infrared Emit

DESCRIPTION

TSTA7100 is an infrared, 890 nm emitt surface emitting chip technology in a TO-18 package with lens.

Page 1 of the datasheet – Product Summary

PRE PCN

After PCN - wit

PRODUCT SUMMARY					
COMPONENT	l _e (mW/sr)	φ (deg)	λ _P (nm)	t _r (ns)	
TSTA7100	50	±5	875	600	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMAT	TION		
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM
TSTA7100	Bulk	MOQ: 1000 pcs, 1000 pcs/bulk	TO-18

Note

MOQ: minimum order quantity

PRODUCT SUMMARY
COMPONENT
TSTA7100

lote

. Test conditions see table "Basic Charac

ORDERING INFORMATION
ORDERING CODE
TSTA7100

Note

MOQ: minimum order quantity

Page 1&2 of the datasheet—Abs. max. rating

PRE PCN

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		I _F	100	mA	
Peak forward current	$t_p/T = 0.5, t_p \le 100 \ \mu s$	I _{EM}	200	mA	
Surge forward current	t _p ≤ 100 μs	I _{FSM}	2.5	Α	
Davis diam'r diam'r	·	P _V	180	mW	
Power dissipation	T _{case} ≤ 25 °C	P _V	500	mW	
Junction temperature		TJ	100	°C	
Storage temperature range		T _{stg}	- 55 to + 100	°C	
Thermal resistance junction/ambient	leads not soldered	R _{thJA}	450	K/W	
Thermal resistance junction/case	leads not soldered	R _{thJC}	150	K/W	
Note T _{amb} = 25 °C, unless otherwise specified		•			

ABSOLUTE MAXIMUM RATIN
PARAMETER
Reverse voltage
Forward current
Power dissipation
Junction temperature
Ambient temperature range
Storage temperature range
Soldering temperature
Thermal resistance junction to ambient

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

Fig. 1 - Power Dissipation Limit vs. Ar

Page 2 of the datasheet – Basic Characteris

PRE PCN

After PCN - wit

BASIC CHARACTERISTIC	cs					
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	V _F		1.4	1.8	٧
Breakdown voltage	I _R = 100 μA	V _(BR)	5			V
Junction capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz, } E = 0$	Cj		20		pF
Radiant intensity	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	l _e	20	50	100	mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	φ _е		10		mW
Temperature coefficient of φ _e	I _F = 100 mA	TΚφ _e		- 0.7		%/K
Angle of half intensity		φ		±5		deg
Peak wavelength	I _F = 100 mA	λ _p		875		nm
Spectral bandwidth	I _F = 100 mA	Δλ		80		nm
Rise time	I _F = 100 mA	t _r		600		ns
Rise time	$I_F = 1.5 \text{ A}, t_p/T = 0.01, t_p \le 10 \mu\text{s}$	t _r		300		ns
Virtual source diameter		d		1.5		mm

Note

T_{amb} = 25 °C, unless otherwise specified

BASIC CHARACTERISTICS	(T,
PARAMETER	
Forward voltage	
Temperature coefficient of V _F	
Reverse current	
Junction capacitance	V _R :
Radiant intensity	
Radiant power	
Temperature coefficient of φ _e	
Angle of half intensity	
Peak wavelength	
Spectral bandwidth	
Temperature coefficient of V _F	
Rise time	
Rise title	

PRE PCN

Page 3 of the datasheet - Graphs

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Relative Forward Voltage vs. Ambient Temperature

Ie,rel - Relative Radiant Intensity (le /l e (100 mA))

Page 3 of the datasheet - Graphs

PRE PCN

Fig. 6 - Radiant Intensity vs. Forward Current

Fig. 8 - Rel. Radiant Intensity/Power vs. Ambient Temperature

Page 3 of the datasheet - Graphs

PRE PCN

Fig. 9 - Relative Radiant Power vs. Wavelength

Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

After PCN - wit

 $I_{\theta, \ rel.}$ - Relative Radiant Intensity (%)

e, rel. - Relative Radiant Intensity

Fig. 8

Additional comments

Following generic pulse handling graph deleted in datashee taken from App Note "Driving an Infrared Emitter in Steady at (84155)" generic pulse

Fig. 3 - Pulse Forward Current vs

 Following graph deleted in datasheet. It is covered by Graph Forward Current

Fig. 7 - Radiant Powe

Page 2 of the datasheet – Basic Characteris

PRE PCN

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UN
Forward voltage	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	V_F		1.4	1.8	V
Breakdown voltage	I _R = 100 μA	V _(BR)	5			V
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Cj		20		pF
Radiant intensity	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	l _a	10	20	50	mW/
Radiant power	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	φο		10		m۷
Temperature coefficient of ϕ_0	I _F = 100 mA	TKφ _α		- 0.7		%/
Angle of half intensity		φ		± 12		de
Peak wavelength	I _F = 100 mA	λp		875		nn
Spectral bandwidth	I _F = 100 mA	Δλ.		80		nm
Rise time	I _F = 100 mA	t _r		600		ns
Hise time	$I_F = 1.5 \text{ A}, t_p/T = 0.01, t_p \le 10 \mu\text{s}$	t _r		300		ns
Virtual source diameter		d		1		mr

(Т,
V _R

Page 3 of the datasheet - Graphs

PRE PCN

Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

Fig. 8 - Relati

Page 2 of the datasheet – Basic Characteris

PRE PCN

After PCN - wit

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 100 mA, t _p ≤ 20 ms	V _F		1.4	1.8	V
Breakdown voltage	I _R = 100 μA	V _(BR)	5			V
Junction capacitance	V _H = 0 V, f = 1 MHz, E = 0	CI		20		pF
Radiant intensity	I _F = 100 mA, t _p ≤ 20 ms	l _a	3.5	6	16	mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p \le 20 \text{ ms}$	фа		10		mW
Temperature coefficient of ϕ_0	I _F = 100 mA	TKφ _α		- 0.7		%/K
Angle of half intensity		φ		± 30		deg
Peak wavelength	I _F = 100 mA	λp		875		nm
Spectral bandwidth	I _F = 100 mA	Δλ.		80		nm
Rise time	I _F = 100 mA	t _r		600		ns
rise time	$I_F = 1.5 \text{ A}, t_p/T = 0.01, t_p \le 10 \mu\text{s}$	t _r		300		ns
Virtual source diameter		d		0.5		mm

Note

T_{amb} = 25 °C, unless otherwise specifie

BASIC CHARACTERISTICS (
PARAMETER	
Forward voltage	
Temperature coefficient of V _F	Т
Reverse current	
Junction capacitance	VF
Radiant intensity	Т
Radiant power	
Temperature coefficient of ϕ_{Θ}	П
Angle of half intensity	
Peak wavelength	Т
Spectral bandwidth	
Temperature coefficient of V _F	
Rise time	
	Г

Page 3 of the datasheet - Graphs

PRE PCN

Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

Fig. 8 - Relative F

TSTA7100, TSTA73000 & TSTA75000

After PCN – with surface emitting chip technology

- For the TSTA7100, TSTA73000 & TSTA75000 the different packages – hence no change in the elect between the post PCN parts
- Differences between the TSTA7100, TSTA73000 a seen in the optical parameters of the angular and part

