Dual Boost Power Module

NXH100B120H3Q0

The NXH100B120H3Q0 is a power module containing a dual boost stage. The integrated field stop trench IGBTs and SiC Diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

Features

- 1200 V Ultra Field Stop IGBTs
- Low Reverse Recovery and Fast Switching SiC Diodes
- 1600 V Bypass and Anti-parallel Diodes
- Low Inductive Layout
- Solderable Pins or Press-Fit Pins
- Thermistor
- Options with Pre–Applied Thermal Interface Material (TIM) and Without Pre–Applied TIM

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Energy Storage Systems

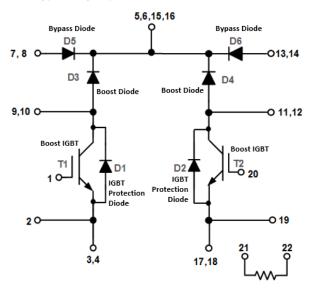
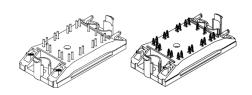
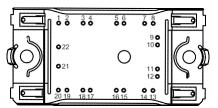



Figure 1. NXH100B120H3Q0xG Schematic Diagram

ON Semiconductor®

www.onsemi.com

Q0BOOST CASE 180AJ SOLDER PINS Q0BOOST CASE 180BF PRESS-FIT PINS


MARKING DIAGRAM

xx = P, PT, S or ST

YYWW = Year and Work Week Code
A = Assembly Site Code
T = Test Site Code
G = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (Note 1) $T_J = 25$ °C Unless Otherwise Noted

Rating	Symbol	Value	Unit
BOOST IGBT	•		
Collector-Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V_{GE}	±20	V
Continuous Collector Current @ T _{C <} 80°C (T _J = 175°C)	I _{C1}	61	Α
Continuous Collector Current @ T _{C <} 102°C (T _J = 175°C)	I _{C2}	50	Α
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	150	Α
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	P _{tot}	186	W
Minimum Operating Junction Temperature	T_{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_{JMAX}	150	°C
BOOST DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Continuous Forward Current @ T _{C <} 80°C (T _J = 175°C)	I _{F1}	34	Α
Continuous Forward Current @ T _{C <} 132°C (T _J = 175°C)	I _{F2}	20	Α
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	P _{tot}	114	W
Surge Forward Current (60 Hz single half-sine wave)	I _{FSM}	185	Α
I ² t - value (60 Hz single half-sine wave)	I ² t	142	A ² s
Minimum Operating Junction Temperature	T_{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_{JMAX}	150	°C
BYPASS DIODE / IGBT PROTECTION DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1600	V
Continuous Forward Current @ T _{C <} 80°C (T _J = 175°C)	I _{F1}	58	Α
Continuous Forward Current @ T _{C <} 141°C (T _J = 175°C)	I _{F2}	25	Α
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$, t_p limited by T_{Jmax})	I _{FRM}	75	Α
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	P _{tot}	91	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_{JMAX}	150	°C
THERMAL PROPERTIES	<u>.</u>		
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES	<u>.</u>		
Isolation test voltage, t = 1 sec, 60 Hz	V _{is}	3000	VRMS
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T_J	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
BOOST IGBT CHARACTERISTICS						
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	_	_	200	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 50 A, T _J = 25°C	V _{CE(sat)}	-	1.77	2.3	V
	V _{GE} = 15 V, I _C = 50 A, T _J = 150°C		=	1.93	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1$ mA	V _{GE(TH)}	4.6	5.27	6.5	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	=	_	800	nA
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	_	44	_	ns
Rise Time	$V_{CE} = 700 \text{ V}, I_{C} = 50 \text{ A V}_{GE} = \pm 15 \text{ V},$ $R_{G} = 4 \Omega$	t _r	_	16	_	
Turn-off Delay Time		t _{d(off)}	=	203	=	
Fall Time		t _f	_	23	-	
Turn-on Switching Loss per Pulse		E _{on}	_	700	_	
Turn-off Switching Loss per Pulse		E _{off}	_	1500	-	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	43	_	ns
Rise Time	$V_{CE} = 700 \text{ V}, I_{C} = 50 \text{ A V}_{GE} = \pm 15 \text{ V},$ $R_{G} = 4 \Omega$	t _r	_	18	-	
Turn-off Delay Time		t _{d(off)}	_	233	-	-
Fall Time		t _f	_	58	-	
Turn-on Switching Loss per Pulse		E _{on}	_	800	-	
Turn-off Switching Loss per Pulse		E _{off}	=	2600	_	_
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	=	9075	_	pF
Output Capacitance		C _{oes}	_	173	-	1
Reverse Transfer Capacitance		C _{res}	_	147	-	
Total Gate Charge	V _{CE} = 600 V, I _C = 40 A, V _{GE} = 15 V	Q_g	_	409	-	nC
Thermal Resistance - chip-to-case		R_{thJC}	-	0.51	-	°C/W
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness \approx 100 μm , λ = 2.87 W/mK	R _{thJH}	=	0.82	_	°C/W
BOOST DIODE CHARACTERISTICS				•	•	
Diode Reverse Leakage Current	V _R = 1200 V	I _R	_	_	300	μΑ
Diode Forward Voltage	I _F = 20 A, T _J = 25°C	V _F	-	1.44	1.8	٧
	I _F = 20 A, T _J = 150°C	1	-	1.93	_	
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	15	_	ns
Reverse Recovery Charge	$V_{CE} = 700 \text{ V}, I_{C} = 50 \text{ A V}_{GE} = \pm 15 \text{ V},$ $R_{G} = 4 \Omega$	Q _{rr}	_	108	_	nC
Peak Reverse Recovery Current]	I _{RRM}	_	11	_	Α
Peak Rate of Fall of Recovery Current		di/dt	=	1500	-	A/μs
Reverse Recovery Energy		E _{rr}	=	20	_	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	=	16	-	ns
Reverse Recovery Charge	$V_{CE} = 700 \text{ V}, I_{C} = 50 \text{ A V}_{GE} = \pm 15 \text{ V},$ $R_{G} = 4 \Omega$	Q _{rr}	=	115		nC
Peak Reverse Recovery Current	-	I _{RRM}	=	12		А
Peak Rate of Fall of Recovery Current		di/dt	=	1400		A/μs
Reverse Recovery Energy		E _{rr}	_	22		μJ
Thermal Resistance - chip-to-case	1	R _{thJC}	-	0.83		°C/W
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness \approx 100 μ m, λ = 2.87 W/mK	R _{thJH}	-	1.15	_	°C/W

ELECTRICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit		
BYPASS DIODE/IGBT PROTECTION DIODE CHARACTERISTICS								
Diode Reverse Leakage Current	=	_	100	μΑ				
Diode Forward Voltage	I _F = 25 A, T _J = 25°C	V _F	=	1.0	1.4	V		
	I _F = 25 A, T _J = 150°C		_	0.90	_			
Thermal Resistance - chip-to-case		R _{thJC}	=	1.04	_	°C/W		
Thermal Resistance - chip-to- heatsink	Thermal grease, Thickness \approx 100 $\mu m,$ λ = 2.87 W/mK	R _{thJH}	-	1.41	=	°C/W		
THERMISTOR CHARACTERISTICS								
Nominal resistance		R ₂₅	_	22	_	kΩ		
Nominal resistance	T = 100°C	R ₁₀₀	_	1486	_	Ω		
Deviation of R25		ΔR/R	-5	-	5	%		
Power dissipation		P_{D}	_	200	_	mW		
Power dissipation constant			_	2	_	mW/K		
B-value	B(25/50), tolerance ±3%		_	3950	_	K		
B-value	B(25/100), tolerance ±3%		_	3998	_	K		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH100B120H3Q0PG	NXH100B120H3Q0PG	Q0BOOST - Case 180BF (Pb-Free and Halide-Free) Press-Fit Pins	24 Units / Blister Tray
NXH100B120H3Q0SG	NXH100B120H3Q0SG	Q0BOOST - Case 180AJ (Pb-Free and Halide-Free) Solder Pins	24 Units / Blister Tray
NXH100B120H3Q0PTG	NXH100B120H3Q0PTG	Q0BOOST - Case 180BF (Pb-Free and Halide-Free) Press-Fit Pins, Thermal Interface Material (TIM)	24 Units / Blister Tray
NXH100B120H3Q0STG	NXH100B120H3Q0STG	Q0BOOST - Case 180AJ (Pb-Free and Halide-Free) Solder Pins, Thermal Interface Material (TIM)	24 Units / Blister Tray

TYPICAL CHARACTERISTICS Boost IGBT & IGBT Protection Diode / Bypass Diode

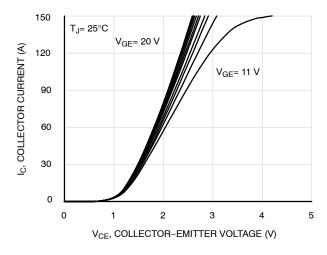


Figure 2. IGBT Typical Output Characteristics

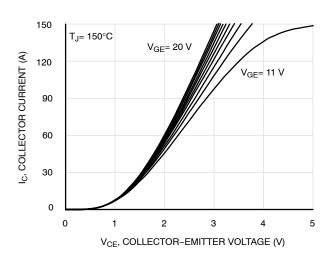


Figure 3. IGBT Typical Output Characteristics

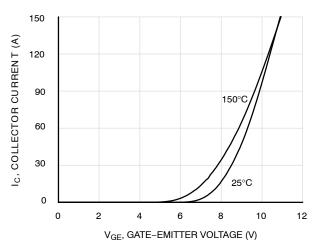


Figure 4. IGBT Typical Transfer Characteristics

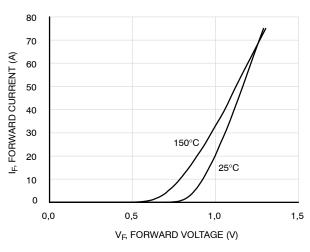


Figure 5. Diode Forward Characteristics

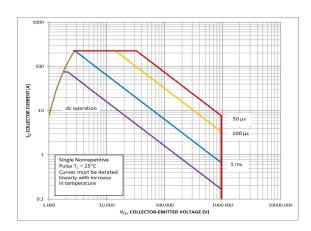


Figure 6. FBSOA

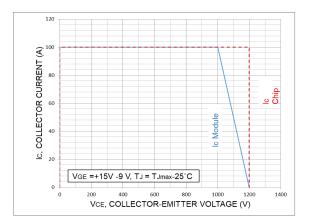
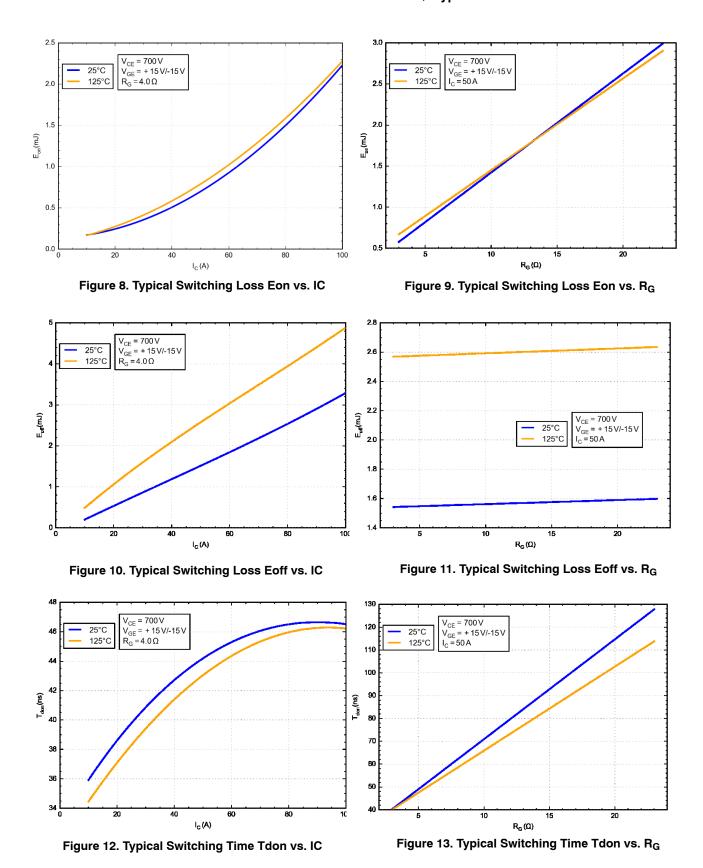
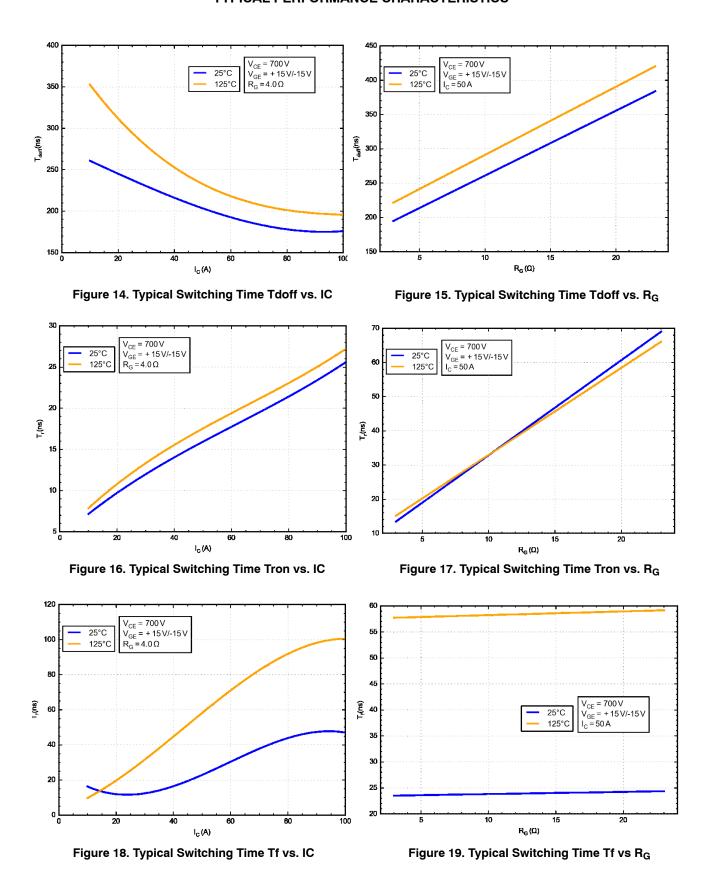




Figure 7. RBSOA

TYPICAL CHARACTERISTICS Boost IGBT & IGBT Protection Diode / Bypass Diode

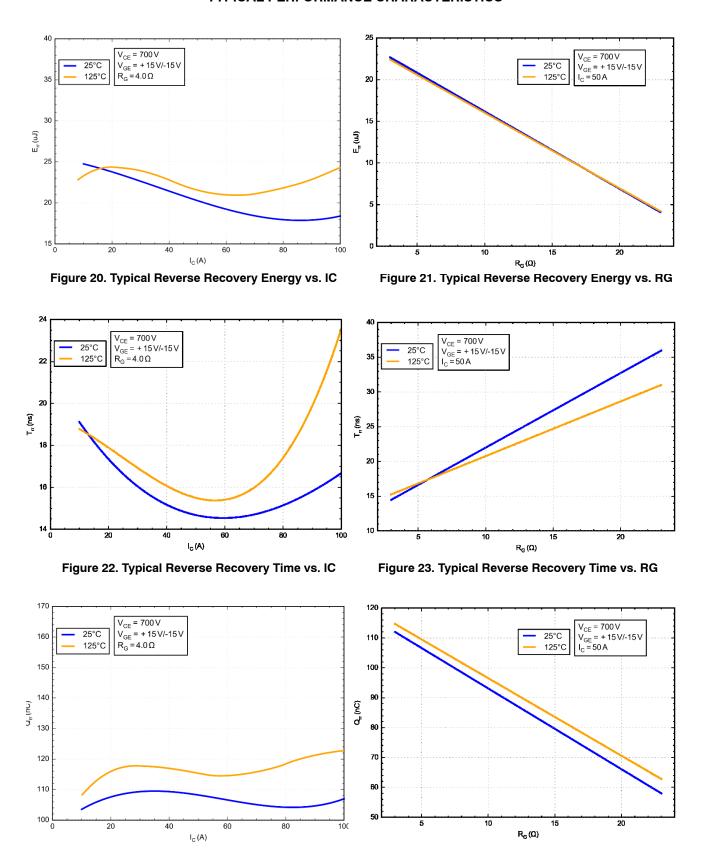


Figure 24. Typical Reverse Recovery Charge vs. IC

Figure 25. Typical Reverse Recovery Charge vs. RG

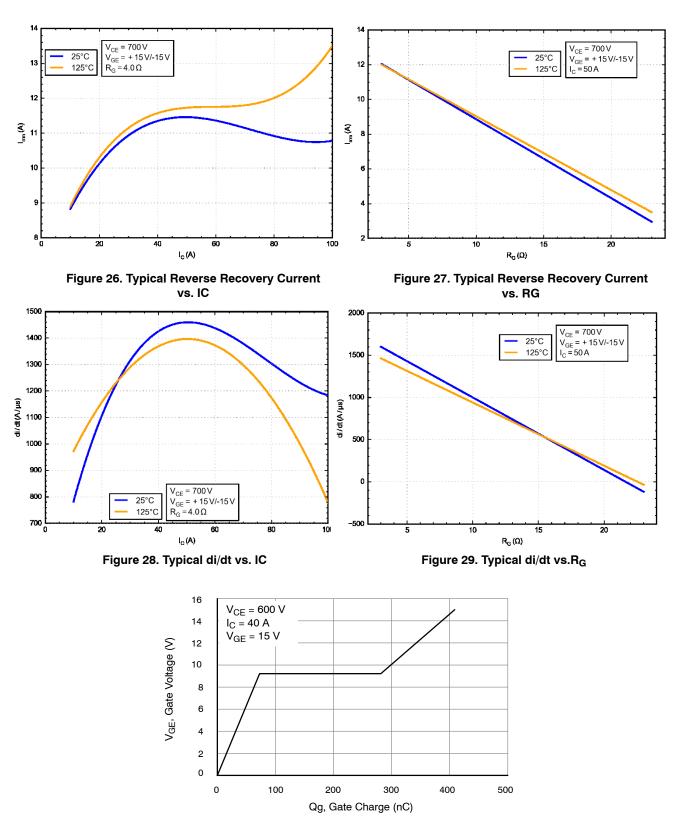


Figure 30. Gate Voltage vs. Gate Charge

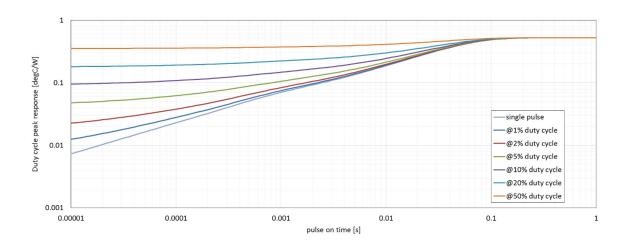


Figure 31. IGBT Junction-to-Case Transient Thermal Impedance

TYPICAL PERFORMANCE CHARACTERISTICS - Boost Diode

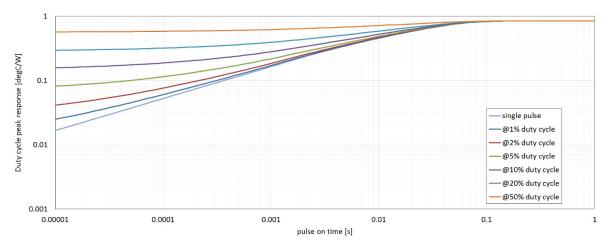


Figure 32. Diode Junction-to-Case Transient Thermal Impedance

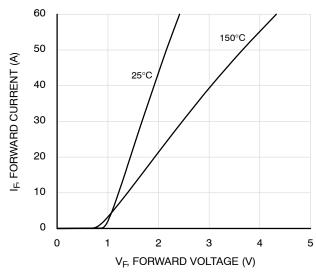


Figure 33. Diode Forward Characteristic

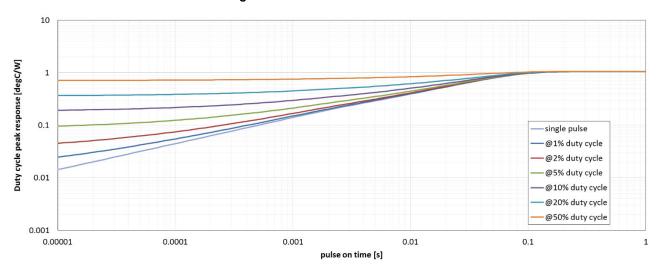
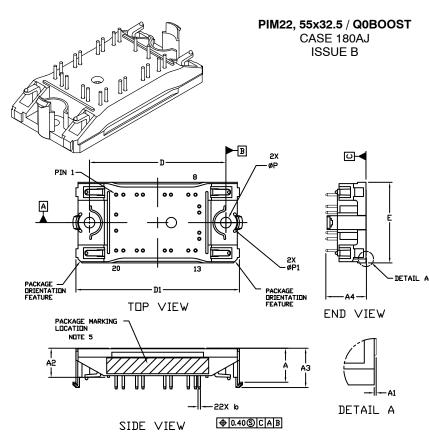



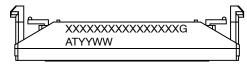
Figure TBD: Transient Thermal Impedance

Figure 34. Diode Junction-to-Case Transient Thermal Impedance

DATE 08 NOV 2017

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 6 APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
- 4. POSITION OF THE CENTER OF THE TERMINALS
 IS DETERMINED FROM DATUM B THE CENTER OF
 DIMENSION D, X DIRECTION, AND FROM DATUM A,
 Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED
 IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH
 DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.


	MILLIMETERS			
DIM	MIN.	NDM.		
A	13.50	13.90		
A1	0.10	0.30		
A2	11.50	11.90		
A3	15.65	16.05		
A4	16.35	REF		
۵	0.95	1.05		
D	54.80	55.20		
D1	65.60	66.20		
E	32.20	32.80		
Ք	4.20	4.40		
P1	8.90	9.10		

MOUNTING HOLE POSITION

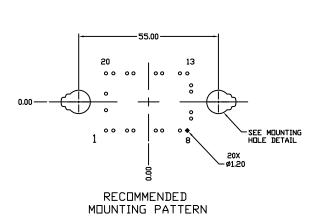
NOTE 4

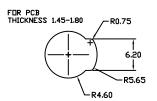
	HOLE P	OSITION		PIN POSITION			PIN POSITION			PIN PI	NDITIZE
PIN	X	Y	PIN	Х	Υ	PIN	х	Y	PIN	X	Y
1	-16.75	-11.25	12	16.75	6.55	1	-16.75	11.25	12	16.75	-6.55
2	-13.85	-11.25	13	15.25	11.25	2	-13.85	11.25	13	15.25	-11.25
3	-8.45	-11.25	14	12.35	11.25	3	-8.45	11.25	14	12.35	-11.25
4	-5.95	-11.25	15	5.35	11.25	4	-5.95	11.25	15	5.35	-11.25
5	2.85	-11.25	16	2.85	11.25	5	2.85	11.25	16	2.85	-11.25
6	5.35	-11.25	17	-5.95	11.25	6	5.35	11.25	17	-5.95	-11.25
7	12.35	-11.25	18	-8.45	11.25	7	12.35	11.25	18	-8.45	-11.25
8	15.25	-11.25	19	-13.85	11.25	8	15.25	11.25	19	-13.85	-11.25
9	16.75	-6.55	20	-16.75	11.25	9	16.75	6.55	20	-16.75	-11.25
10	16.75	-4.05	21	-16.75	3.25	10	16.75	4.05	21	-16.75	-3.25
11	16.75	4.05	22	-16.75	-3.25	11	16.75	-4.05	22	-16.75	3.25

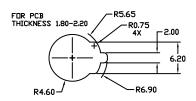
GENERIC MARKING DIAGRAM*

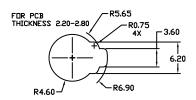
XXXXX = Specific Device Code

a = Pb-Free Package

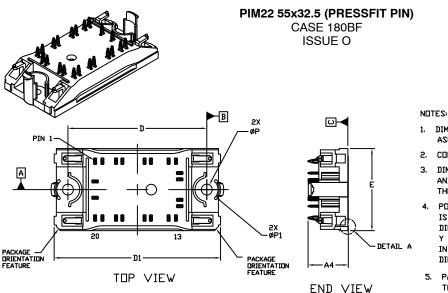

AT = Assembly & Test Site Code

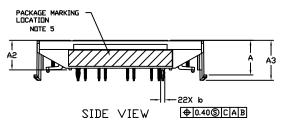

YYWW = Year and Work Week Code


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON63481G	B481G Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED COF			
DESCRIPTION:	PIM22 55X32.5 / Q0BOOST	(SOLDER PIN)	PAGE 1 OF 2		

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.





MOUNTING HOLE DETAIL

DOCUMENT NUMBER:	98AON63481G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM22 55X32.5 / Q0BOOST	(SOLDER PIN)	PAGE 2 OF 2		

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTE 4

	PIN POSITION			PIN PI	NDITIZE
PIN	X	Υ	PIN	х	Υ
1	-16.75	11.25	12	16.75	-6.55
2	-13.85	11.25	13	15.25	-11.25
3	-8.45	11.25	14	12.35	-11.25
4	-5.95	11.25	15	5.35	-11.25
5	2.85	11.25	16	2.85	-11.25
6	5.35	11.25	17	-5.95	-11.25
7	12.35	11.25	18	-8.45	-11.25
8	15.25	11.25	19	-13.85	-11.25
9	16.75	6.55	20	-16.75	-11.25
10	16.75	4.05	21	-16.75	-3.25
11	16.75	-4.05	22	-16.75	3.25

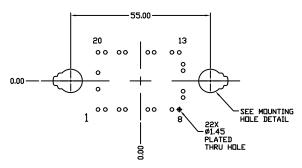
DATE 21 MAY 2019

- DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION & APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	13.50	13.70	13.90			
A1	0.10	0.20	0.30			
A2	11.50	11.70	11.90			
АЗ	15.65	15.85	16.05			
A4	1	.5.95 RE	F			
b	1.61	1.66	1.71			
D	54.80	55.00	55.20			
D1	65.60	65.90	66.20			
E	32.20	32.50	32.80			
Ք	4.20	4.30	4.40			
P1	8.90	9.00	9.10			

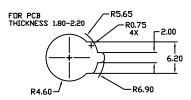
DOCUMENT NUMBER:	98AON07824H	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM22 55x32.5 (PRESSFIT	PIN)	PAGE 1 OF 2		

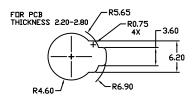
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


PIM22 55x32.5 (PRESSFIT PIN)

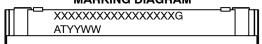
CASE 180BF ISSUE O

DATE 17 MAY 2019


MOUNTING HOLE POSITION


	HOLE POSITION			PIN POSITION	
PIN	Х	Υ	PIN	Х	Υ
1	-16.75	-11.25	12	16.75	6.55
2	-13.85	-11.25	13	15.25	11.25
3	-8.45	-11.25	14	12.35	11.25
4	-5.95	-11.25	15	5.35	11.25
5	2.85	-11.25	16	2.85	11.25
6	5.35	-11.25	17	-5.95	11.25
7	12.35	-11.25	18	-8.45	11.25
8	15.25	-11.25	19	-13.85	11.25
9	16.75	-6.55	20	-16.75	11.25
10	16.75	-4.05	21	-16.75	3.25
11	16.75	4.05	22	-16.75	-3.25

RECOMMENDED MOUNTING PATTERN



MOUNTING HOLE DETAIL

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

G = Pb-Free Package

AT = Assembly & Test Site Code

YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON07824H	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PIM22 55x32.5 (PRESSFIT PIN)		PAGE 2 OF 2	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sh

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative